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Visualizing Complexity in the Brain 
Lloyd Watts 

How does the human brain work?  The challenge presented by this question has 
motivated countless philosophers and scientists throughout history to study the brain and 
the nature of intelligence, in search of the organizing principles of human thought and 
perception.  Yet, despite the enormous funding of the neurosciences and tremendous 
advances in technology in the latter half of the twentieth century, it appears that there is 
not yet a meaningful consensus on the organizing principles of brain function. 

 
There are good reasons to believe that we are at a turning point, and that it will be 

possible within the next two decades to formulate a meaningful understanding of brain 
function.  This optimistic view is based on several measurable trends, and a simple 
observation which has been proven repeatedly in the history of science:   

 
Scientific advances are enabled by a technology advance that allows us to 
see what we have not been able to see before.   
 

Examples of enabling technologies include the invention of the compound microscope in 
the 1860’s, the invention of neural staining techniques by Golgi in the 1880’s, the 
invention of stroboscopic illumination, each of which enabled new scientific discoveries.  
In these cases, the technology breakthroughs that enabled something new to be seen had 
to do with seeing something smaller, more translucent, or faster-vibrating than could be 
seen before.  But for understanding the brain in the early twenty-first century, we need to 
be able to see something more complex than we have been able to see before, which is a 
fundamentally different kind of problem.  We already have a good understanding of the 
behavior of individual synapses, neurons, axons and dendrites.  The interesting question 
is now:  How do we understand and visualize the complexity of the brain?    

 
The technology advance that allows us to see the complexity we could not see 

before is provided by the recent strong advances in computing and graphics technology.  
The availability of inexpensive computers with multi-gigahertz processors, gigabytes of 
on-board memory, hundreds of gigabytes of disk storage, and powerful graphics 
rendering chips provide an unprecedented platform for real-time brain modeling and 
visualization that simply did not exist even a few years ago.   Kurzweil has projected 
Moore’s Law out to 2020 and beyond (Kurzweil, 1999), and has concluded that we will 
have computers with sufficient memory and computing capacity to simulate major brain 
functions within the next twenty years.  The question is:  will we have the right 
algorithms to run on these phenomenal machines to simulate brain function and achieve 
brain-like performance?  
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I believe that the way to create a brain-like intelligence is to build a real-time 
working model system, accurate in sufficient detail to express the essence of each 
computation that is being performed, and verify its correct operation against 
measurements of the real system.  The model must run in real-time so that we will be 
forced to deal with inconvenient and complex real-world inputs that we might not 
otherwise think to present to it.  The model must operate at sufficient resolution to be 
comparable to the real system, so that we build the right intuitions about what 
information is represented at each stage.  Following Mead, the model development 
necessarily begins at the boundaries of the system (i.e., the sensors) where the real system 
is well-understood, and then can advance into the less-understood regions (Mead, 1989).  
The model of the independent or well-understood parts of the system can be used to gain 
insights into dependent or less-understood parts of the system, since in many cases the 
well-understood parts provide inputs to the less-understood parts.   In this way, the model 
can contribute fundamentally to our advancing understanding of the system, rather than 
simply mirroring the existing understanding.  In the context of such great complexity, it is 
possible that the only practical way to understand the real system is to build a working 
model, from the sensors inward, building on our newly-enabled ability to visualize the 
complexity of the system as we advance into it.  Such an approach could be called 
reverse-engineering the brain. 

 
Note that I am not advocating a blind copying of structures whose purpose we 

don’t understand, like the legendary Icarus who naïvely attempted to build wings out of 
feathers and wax.  Rather, I am advocating that we respect the complexity and richness 
that is already well-understood at low levels, before proceeding to higher levels.  Once 
information is thrown away, it can never be recovered.  One of the powerful principles 
that is emerging about the operation of the brain is that it extracts and makes use of all the 
information in the signal. 

 
Mead has pointed out that the constraints we impose on a problem have a 

powerful influence on our approach and the form of the solution that will result (Mead, 
1989).  Therefore, it is very important at the beginning of a project of this magnitude to 
be clear about the choice and prioritization of those constraints.  I have had success so far 
using the following prioritization of constraints: 

 
1. High resolution representations, verifiable against the biology. 
2. Real-time operation and visualization of the results. 
3. Fast design turnaround time. 

 
A notable and perhaps surprising omission in this approach is any constraint on 

implementation technology.  Allen advised an early focus on the algorithms, while 
remaining flexible on the implementation technology, since the project was likely to take 
many years and the implementation technology changes so fast (Allen, 1999).   Since this 
work began in 1989, the algorithms have been implemented in several different 
technologies, appropriate for the questions under investigation and resources available at 
the time:  analog VLSI, field-programmable gate arrays (FPGAs), batch-mode software 
on desktop machines displayed in real-time as QuickTime movies, and real-time software 
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on a networked supercomputer.  Other implementation technologies are imminent as the 
project verges on commercial deployment.  The only constant is the need to get the 
algorithms right, in real-time, as soon as possible.   

 
The ambition of reverse-engineering the brain in verifiable detail may appear 

overwhelming and unrealizable, but it is possible to make a sound argument that the goal 
is attainable within 20 years.  Substantial progress has already been demonstrated on a 
significant subsystem with this approach.  The issues to be addressed are: 

 
1. Neuroscience knowledge:  Do we know enough about the brain to begin 

building an artificial one?   
2. Computing technology: Do we have a computational medium in which to 

prototype a design that can express the richness of the computations done 
in a real brain, such that the model could really inform the study of the real 
system?   

3. Non-technical issues:   Many experts will be required to contribute to the 
effort.  Why should they help?  Who will pay for the monumental effort?  
What is the economic model for funding the work?  

 
As in all major endeavors, timing is everything.  The approach can only succeed if all 
necessary ingredients are present and can contribute synergistically.  Since 1950, 
advances in neuroscience knowledge and computing technology have led many workers 
to speculate that brain-like intelligence and performance was just around the corner, only 
to discover that the system was more complex, interconnected and robust than had been 
previously appreciated, and that far more computing horsepower was required than was 
available at the time.  The bold attempts and subsequent disappointments in each decade 
since 1950 have all lead to a well-justified skepticism in both the scientific and 
investment community as to whether it will be possible to build a working intelligent 
machine.  In fact, the previous attempts were based on overly simple models 
implemented on the inadequate machines of the day, which, in hindsight, did not have the 
necessary ingredients for success.  I believe that the lesson to be learned from the 
previous disappointments was:  the brain is much more complex than we would like to 
admit, and we need correspondingly complex models and serious computing horsepower, 
properly utilized, to build a robust, working system.  

 
Fortunately, neuroscience knowledge and computing technology have both 

advanced dramatically in the last decade, as has our respect for the required complexity.  
Unusually favorable conditions exist for the period 2000-2020, whereas they most 
certainly have not existed in any previous time in history.   For the remainder of this 
chapter, I will discuss the reasons for this optimistic view. 

Neuroscience Knowledge 

Does anyone know enough about the brain, in 2002, to be able to build an artificial one?  
No. There are still many unanswered questions about brain function, and there is no 
single individual who understands the brain in its entirety to the level that he or she could 
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build a working model.  But does the neuroscience community, in 2002, collectively 
know enough that we could begin modeling the brain in the well-understood regions?  
Absolutely.  I will describe ongoing modeling efforts in the auditory pathway, shown in 
Figure 1, as an example brain subsystem in which significant progress has already been 
made, and as an example of the kind of complexity that is evident in the real brain. 
 

 

Figure 1:  Auditory Pathway (highly simplified).   Adapted from Young 1998, Oertel 
2002, Casseday et al. 2002, LeDoux 1997, and Rauschecker and Tian 2000.  

 
In the auditory system, the middle ear and cochlea are now well-understood, after about 
100 years of research (the cochlea could not have been called well-understood even 10 
years ago, due to controversy over the role played by the outer hair cells).   It is now 
possible to build a real-time, high-resolution working model of the cochlea that accounts 
for its spectral sensitivity, temporal responses, nonlinear frequency-dependent amplitude 
compression and gain control, masking, and other subtle features, directly verifiable 
against biological and psychophysical data.  This model can then be used in our 
investigation and modeling of the next layer in the system:  the cochlear nucleus, which 
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Shepherd has described as one of the “best understood regions of the brain” (Shepherd, 
1998).   The basic circuit of the cochlear nucleus is given by Young (Young, 1998), 
describing in detail the essential cell types responsible for detecting spectral energy, 
broadband transients, fine timing in spectral channels, enhancing sensitivity to temporal 
envelope in spectral channels, and spectral edges and notches, all while adjusting gain for 
optimum sensitivity within the limited dynamic range of the spiking neural code.  Again, 
it is possible to build a real-time, high-resolution working model of the cochlear nucleus 
that receives its inputs from the working model of the cochlea, and can be verified against 
real measurements from cochlear nucleus neurons. 

 
Figure 2:  Multipolar Cell response to speech (male speaker in the 
middle of the utterance “so after a lot of thought”).           

An output of such an auditory model is shown in Figure 2, for a complex speech input.  
This shows the output of the ensemble of T-multipolar cells (labeled MC in Figure 1), 
which receive inputs from the cochlea / auditory nerve, and extract and encode the 
spectral energy in a way that is stable as sound level changes (Young, 1998).  In Figure 2, 
the fundamental frequency of the speaker’s voice can be seen at approximately 125 Hz, 
along with many harmonics at the integer multiples of the fundamental frequency.  
Strong bands of resonant energy can also been seen at around 500 Hz, 1 kHz, 2 kHz, and 
4 kHz – these are the formant frequencies (resonances of the vocal tract),  that correspond 
to and encode the different vowel qualities.  The figure includes two time-scales to allow 
fine response detail to be seen in the right half of the display, with context over a longer 
period shown in the left half of the display.  The four strong pulses at 4 kHz in the right 
half of the display correspond to the glottal pulse periods at about 8ms, giving a 
periodicity cue that corresponds to the pitch frequency at 125 Hz.  Also evident in the 
display are two short bursts of high-frequency noise, corresponding to the letters f and t in 
the word “after”.  Figure 2 represents a snapshot of a working, high-resolution, real-time 



 page 7

system – it is not possible on a printed page to convey the complexity of the animated 
output that responds in real time, synchronized with the input sounds.   

 
Figure 3:  Multipolar Cell, MSO, and LSO response to a moving 
sound source coming from the right side.           
 
Figure 3 shows a snapshot of the dynamic output of the auditory model for a 

moving sound source, showing the spectral energy representation computed by the 
multipolar cells in the cochlear nucleus, interaural time difference (ITD) representation 
computed by the medial superior olive (MSO) (Yin, 2002) and the interaural level 
difference (ILD) representation computed by the lateral superior olive (LSO) and further 
normalized and refined by the inferior colliculus (IC) (Casseday et al., 2002).  These 
images indicate the complexity of the representations that are computed in the auditory 
brainstem, organized by the inferior colliculus, and conveyed to the cortex via the 
thalamus.  If we are to have any hope of understanding what is happening in the cortex, 
we must first have a good model of all of the low-level representations that serve as its 
inputs. 

  
In 2002, there is good understanding of the representations up to the Inferior 

Colliculus.  However, there is no simple answer to the question “What is the Inferior 
Colliculus doing?” – it is doing everything!  It aggregates, normalizes and organizes all 
the ascending representations from lower centers, computes new representations, and 
modifies them all with descending information from the cortex (Casseday et al., 2002).  
This does not mean that we will be unable to answer the question, it just means that the 
answer will be necessarily very complex, and we will need a way to express that 
complexity and verify that our understanding of it is correct, before being able to advance 
in a detailed way into the auditory cortex. 

 
In 2002, in the absence of a conclusive model of the inferior colliculus, does this 

mean we must wait another decade before proceeding?  Not at all.  Bregman has 
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elucidated the psychoacoustic principles by which sounds are grouped to form 
perceptions of objects in auditory scenes (Bregman, 1990).  Many research groups around 
the world, including Sheffield and MIT, have been building models that account for 
various parts of the scene analysis machinery.  What is important is that we link the high-
level psychoacoustic model to the low-level neurophysiological model, so as to reap the 
benefit of all the information that is extracted by the lower levels of the real brain.   

 
One example of the opportunity that exists is in the area of speech recognition.  

Present-day speech recognizers are capable of 90-98% word recognition accuracy, 
depending on vocabulary size, number of users, noise levels and other factors.  It has 
taken forty years and thousands of talented engineers to build speech recognition systems 
this good.  And yet, these systems still perform very poorly compared to humans 
(Lippmann, 1997).  These systems use a kind of engineered psychoacoustic model 
(phoneme classification and Viterbi search through a space defined by a Hidden Markov 
Model) to account for the human cortical recognition process, while relying on a very 
low-resolution front-end (128-point Fast Fourier Transform (FFT), smoothed and 
orthogonalized to create a 13-point cepstrum, updated every 10 milliseconds) to provide 
the spectral information to the phoneme classifier (Rabiner and Juang, 1993).   
 

At the level of the FFT, the amount of information represented is 64 spectral 
coefficients, 100 times/second, or 6,400 values/second. By comparison, the human 
cochlea represents the spectrum with 30,000 auditory nerve fibers, representing the 
outputs of approximately 3,000 inner hair cells (10:1 for better signal representation). The 
cochlea produces outputs with 6 microsecond temporal resolution (Yin, 2002), with 3,000 
unique outputs represented, organized on an (approximately) logarithmic frequency scale.  
Accounting for the fact that low-frequency channels do not carry as much information as 
high-frequency channels, we estimate the bandwidth on the auditory nerve to be about 10 
million values/second, approximately 1,500 times as much information as the frame-
based FFT, as used in a conventional speech recognizer.  (The expansion in bandwidth 
from the raw audio waveform at, say, 44,100 samples/second, to the auditory nerve 
representation at 10 million values/second may seem surprising – the auditory nerve 
representation is a high-bandwidth redundant version of the signal from which the higher 
centers can extract the necessary information). The higher temporal and spectral 
resolution is vital for performing auditory stream analysis to extract speech from 
background sounds and to detect fine timing distinctions used in distinguishing 
confusable consonants – precisely the two areas in which existing speech recognizers fail.  
Speech recognition is a prime example of a relatively powerful psychoacoustic model of 
a cortical process (Hidden Markov Models and Viterbi Search) being starved by a poor 
model of a subcortical process, to the detriment of overall system performance. 
 

The preceding argument suggests that it should be possible to improve speech 
recognition with an auditory model front-end that replaces the FFT/filterbank/cepstral 
front-end.  To date, all such attempts have failed to produce any significant improvement, 
so that, again, there is great skepticism in both the scientific and investment community 
about the potential for progress in this area.  Hermansky has surveyed the previous 
attempts and offered several possible explanations for the disappointing results, including 
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a wise warning of the dangers of blindly copying what is known about the brain without 
understanding the underlying principles (Hermansky, 1998).  I agree that it would be 
pointless to simply bolt a cochlear model onto a Hidden Markov Model.  The biological 
system does a tremendous amount of feature extraction between the cochlea and the 
cortex, and within the cortex, as shown in Figure 1.  It is not surprising that early naïve 
attempts to connect a cochlea to the cortex have failed.  Success will be achieved when 
we extract all the robust features used by the human system to process speech, and feed 
them correctly into an appropriate cortical model.  It is not possible to extract the 
necessary features if vital information is thrown away at the first processing step.  The 
cues for distinguishing the confusable consonants are well-known (Miller and Nicely, 
1955, Ladefoged 2001), and the high-resolution cochlea model supports the extraction of 
all of those cues, whereas the frame-based FFT method fundamentally does not.  In 
addition, the cochlea model provides all the information used by the human system to 
separate the speech from other sounds, whereas the frame-based FFT method again does 
not.  I expect to see improved speech recognizers, based on powerful auditory models, 
commercially deployed by 2005-6, with vastly better performance than present-day 
systems both in quiet conditions and in noisy, reverberant environments. 

 
The previous discussion has focused on the auditory system, and built the case 

that the neuroscience community already knows an overwhelming amount about how it 
works.  Everything we know about the auditory system suggests that it is far more 
complex than any present-day engineering model.  The same case can be made for the 
visual system.  The visual system has been mapped out in detail in the macaque monkey 
(Van Essen and Gallant, 1994), resulting in a convenient high-level block diagram from 
the retina up to complex cortical areas responsible for recognizing faces, supported by 
hundreds of studies of the various cell-types and their connectivity.  Douglas and Martin 
have studied the neural structure of the neocortex, and provided a canonical microcircuit 
diagram for conceptualizing its operation (Douglas and Martin, 1998).  Calvin has 
offered a rather speculative theory of how the cortex might work, useful at least in 
encouraging us to begin thinking about a connection between the cellular connectivity of 
the cortex and its high-level functions (Calvin, 1996).  Churchland and Sejnowski have 
examined many aspects of neurobiology, including learning and memory (Churchland 
and Sejnowski, 1992).  The problem is not that we know too little about the brain.  The 
problem is that what we do know is overwhelming, and we need a fundamentally new 
way to think about it, visualize it, collaborate on it, and consolidate it into a working 
engineering model.   

Computing Technology 

Do we have computers powerful enough, in 2002, to be able to build an artificial brain?  
No – at least most of us don’t; there are some research labs that are making impressive 
progress, however.  In 2002, IBM is the current record-holder with a 7.2x1012 
operations/second machine (Top500 website, 2002).  Present-day desktop computers are 
capable of performing about 4x109 operations/second.  Kurzweil has estimated that we 
will need a computer capable of performing 1016 operations/second, and that these 
machines will not be available, at reasonable cost, until about 2020 (Kurzweil, 1999).   
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But that is the estimated computing performance needed to simulate the entire human 
brain.  As described in the previous section, we don’t need to do that yet – we only need 
to simulate the well-understood parts, well enough to let us branch into a new less-
understood part.  The available computing power has recently become adequate for that 
purpose.  In my own work, I have found that a modest amount of computing hardware is 
sufficient to simulate the major functions of the auditory pathway up to the inferior 
colliculus, with efficient algorithms.  Rodney Brooks stated in a 1999 colloquium at 
Stanford University that, in his work on building anthropomorphic motor systems, “a 
paradigm shift has recently occurred – computer performance is no longer a limiting 
factor.  We are limited by our knowledge of what to build.” (Brooks, 1999) 
 Prior to 1999, we knew enough about the brain to have been able to build a little 
of it, but the necessary computing power was not available.  This meant, in practice, that 
researchers struggled with feeble computers to painstakingly simulate the operation of a 
few neurons, and did not really learn anything they didn’t already know.  Now, the 
computing power is great enough that we can implement a detailed model of a subsystem 
that we understand, and learn something new about it by watching it run in response to a 
complex, real-world stimulus. This new ability is related to Kurzweil’s Law of 
Accelerating Returns (Kurzweil, 2000), and it will add an important new element to 
neuroscience research.   The only requirement will be that the model be realistic, that is, 
verifiable against the neurobiology.  Otherwise, we will get a fast answer about some 
system we made up, not a fast answer about the brain.  This is why priority #1 must be: 
High resolution representations, verifiable against the biology. 
 Computing power, in operations/second, is not the only factor in the paradigm 
shift.  How will we verify our high resolution representations?  The only way I can see is 
to make high-resolution animated images of them.  In addition to requiring a lot of 
computing power, this also requires fast, high-resolution graphics rendering capability.  
Even as recently as 1998, real-time graphics rendering of high-resolution brain 
simulations was simply not possible on affordable machines.  In 2002, it is not only 
possible, it is inexpensive. 

Non-Technical Issues 

With a wealth of neuroscience knowledge available with which to begin, and all 
the computing power we can really use, what else do we need to undertake the program 
of reverse engineering the brain?   

 
The first major issue is the need for direct collaboration with qualified 

neuroscientists.  In the first section of this chapter, I stated that the neuroscience 
community collectively knows enough about the brain that we could begin a detailed 
modeling process.  But their collective knowledge won’t help us build a working model.  
Someone has to distill their knowledge into a concise form that can be efficiently 
implemented in a machine.  This requires an active, long-term collaboration between the 
modeler and many neuroscientists – it is simply not possible to learn what the system is 
doing by reading their papers.  There are just too many papers.  And the only way to 
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verify that the model is right is to show it to the neuroscientists who measured the real 
system, and keep changing it until the neuroscientists agree that it is right. 

 
The other major issues relate to funding.  Who will pay for this effort?  What is 

the economic model for funding the work?  Are there commercial applications that can 
justify an investment model? 

 
There are several ways that this kind of project can be funded.  The choice of 

funding model and funding source depends on the particular characteristics of the 
problems being addressed and the people involved, and could range anywhere from an 
academic lab funded by a government agency, a corporate research lab, or a startup 
funded by angel investors or venture capitalists, if commercial applications can be 
developed on the appropriate time-scale.   I have found that the single biggest obstacle in 
funding this kind of project is the widespread skepticism in both the scientific and 
investment communities, after so many decades of high hopes and deep disappointments.  
I have been very fortunate to find scientific advisors and visionary investors who have 
taken the time to understand the promise of the approach, and by contributing to the 
effort, are causing it to succeed.   

Conclusions 

 At about the turn of the twenty-first century, we passed a detectable turning point 
in both neuroscience knowledge and computing power.  For the first time in history, we 
(collectively) know enough about our own brains, and have developed such advanced 
computing technology, that we can now seriously undertake the construction of a 
verifiable, real-time, high-resolution model of significant parts of our own intelligence.  
The ability to visualize the staggering complexity as we develop and verify the working 
model will be a necessary element in this ongoing program. 
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