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ABSTRACT 

 
There is a need in the industry for an accurate objective predictor of the performance of high-

performance noise suppressors, standardized at ITU-T in the P.ONRA initiative.  This contribution 

describes additional work extending an approach introduced in COM 12 – C 184 intended to predict 

SIG, BAK, and OVRL scores (SMOS_LQO, NMOS_LQO, and GMOS_LQO, respectively) obtained 

using the ITU-T P.835 methodology.  These extensions include accommodation of non-stationary 

distracters and different noise suppressor strategies.  Preliminary work on validation is presented. 

Further work is needed to extend the algorithm to explicitly handle voice processing apart from noise 

suppression such as speech codecs and time-varying dynamic range compression.  Also, as this current 

version was developed based on narrowband data, further work is needed to collect wideband data and 

extend the algorithm accordingly. 

 

1.   Introduction 
 

There is a need in the industry for an accurate objective predictor of the performance of high-

performance noise suppressors, standardized at ITU-T.  This contribution describes additional work on 

an algorithm first described in COM 12 – C 184 [1]. This work demonstrates early feasibility of 

predicting the SIG, BAK, and OVRL scores (SMOS_LQO, NMOS_LQO, and GMOS_LQO) obtained 

using the P.835 Amendment 1 Appendix III methodology [2]. 

2.  Algorithmic Approach 

 
The approach assumes the availability of the input signal (noisy mix) and output signal (noise-reduced 

speech) of the device under test, as well as the original speech signal and noise signal, as shown in 

Figure 1: 
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Figure 1:  System Diagram 

 

The Objective Voice Quality Predictor takes those four signals, and performs the following operations: 

 

o Estimate the speech gain and noise attenuation from the Device Under Test,  

o Construct a corresponding reference signal for an ideal noise suppressor (Estimated 

Idealized Noise-Reduced Reference, or EINRR),  

o Compare the EINRR to the Noise-Reduced Speech to estimate the speech distortion and 

noise masking effects (used to predict SMOS_LQO),  

o Compare the Noisy Mix to the Noise-Reduced Speech to determine the amount of noise 

suppression and noise distortion (used to predict NMOS_LQO). 

o Combine the SMOS_LQO and NMOS_LQO and their constituent components to predict the 

overall score (GMOS_LQO). 

3.  Development Methodology 

The training data previously described in COM 12 – C 184 comprised a range of input SNRs from 0 to 

30dB for babble noise only, presented to one noise suppressor algorithm, operating over a range of 

fixed suppression levels from 0 to 35dB. 

For this work, additional training data was collected for a set of eight noise types, including the six 

types defined in ITU-T P.835, Amendment 1 Appendix III.  Five of the noise samples were taken from 

ETSI EG 202 396-1 [3].  Table 1 lists the names, descriptions, and filename from ETSI EG 202 396-1 

if applicable.  The SNR levels were 0, 6, 12, and 24 dB. 

 

Table 1.  Noise names and descriptions for training set 

Noise Type 

Name 
Description EG 202 396-1 Filename 

Mensa Recording in a cafeteria Mensa_binaural 

Car Recording at the driver’s position Fullsize_Car1_130kmh_binaural 

Street Recording at pavement Outside_Traffic_Crossroads_binaural 

Train Recording at departure platform Train_Station_binaural 

School Recording beside schoolyard Schoolyard_Noise2_binaural 

Music Rock music, guitar and drums n/a 

Voice Alternating male and female talker n/a 

Pink Uncorrelated pink noise n/a 
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The noise suppressor algorithm investigated here was a two-microphone hybrid system comprising a 

canceller followed by a fixed multiplicative suppressor.  The canceller portion is implemented at two 

levels based on the distance between the two microphones, or Mic Spacing: 2-cm and 8-cm, where the 

former provides better noise reduction than the latter.  The subsequent multiplicative suppressor stage 

is implemented at six fixed levels of Noise Suppression: 0, 6, 12, 18, 24, and 30dB. 

 

The speech source for the P.835 tests training data was provided by Dynastat and included sixteen 

sentences, two from each of four male and four female talkers, all native speakers of American 

English.  Four additional sentences were added to the beginning of the 16 test sentences to 

accommodate any convergence in processing.  These 4 additional sentences were not used in listening 

tests or algorithm training. 

  

For each noise type in Table 1, a P.835 listening test was conducted.  Each test included 48 test 

conditions:  4 SNR x 2 Mic Spacing x 6 Noise Suppression.   

 

The generation of conditions was simulated, in a manner similar to that described in COM 12 – C 184.  

Two sets of impulse responses were created, one for each level of Mic Spacing, by building two 

acoustic mock-up handsets, and measuring speech signal impulse responses from HATS artificial 

mouth to each microphone on the two devices.  Impulse responses from the four loudspeakers in a test 

room consistent with ETSI EG 202 396-1 to each microphone on the two devices were also measured 

to obtain noise signal impulse responses.  Input signals for the algorithm from Figure 1, clean speech, 

noise-alone, and noisy mix, were produced by convolution of speech and noise files with the 

appropriate impulse responses and mixing at the specified SNRs before processing by the noise 

reduction systems.  No additional signal processing (e.g., speech codec) was applied in the test 

conditions for training data.  All processing was performed at a sample rate of 8-kHz for narrowband 

speech. 

 

Twelve reference conditions were included, based on the reference system proposed in AH-11-029 

[4], which is intended as an improvement over the MNRU reference system for the SIG rating when 

used for P.835 evaluation of noise reduction systems.   

 

In each test, 32 naïve native speakers of American English participated, listening monaurally at 79 

dBSPL.  A total of 128 votes were collected for each of the 60 conditions per test.  The results from 

the School condition were a pilot test for the hybrid canceller/suppressor, covering a wider range of 

mic spacing, and so were not included in the final training set.  Combined across the seven tests, 

excluding school, the new training database consists of 336 test conditions.    These were added to the 

72 test conditions reported in COM 12 – C 184 for a total training set size of 408 conditions. 

4.  Results – Training Set 

The operations described in Section 2 above were performed on the four input audio signals for each 

of the 408 listening conditions, to determine the estimated values of speech distortion, noise distortion, 

noise masking, and noise suppression strength.   A model fit was then performed to map those four 

extracted signal values to the desired outputs SMOS_LQO, NMOS_LQO, and GMOS_LQO.  Figure 2 

below shows the results of the model fit to the training data.  Three sets of panels are shown, one for 

S-MOS (top), one for N-MOS (middle) and one for G-MOS (lower).  In each set, there are columns 

for each noise type.  In each set, the left-most panel is for the training results in babble, as reported in 

COM 12 – C 184.  For each dimension (e.g., S-MOS), there are two rows of results, with the upper 

row for the 2-cm microphone spacing, and the lower row for the 8-cm mic spacing. Results are plotted 

as a function of the amount of noise suppression, with SNR coded by color: blue for 0 dB; green for 6 

dB; red for 12 dB; and magenta for 24 dB.  Thin lines with error bars show subjective results; thick 

lines with open symbols show model fits.  
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A simple linear remapping, derived from the reference conditions only, was applied to the subjective 

scores prior to fitting the model.  The remapping was based on common practice as used by the Global 

Analysis Lab in subjective studies, and is described in the Appendix. 

 

 
 

 
 

 

Figure 2:  Model Fit on training data.  Thin lines with error bars are the subjective scores.  

Bold lines with circle points are the predictions.   Upper panel for S-MOS, middle panel for N-

MOS, lower panel for G-MOS.  SNR values are coded by color:  Blue for 0 dB; Green for 6 

dB; Red for 12 dB; and magenta for 24 dB. 

 

The predictions above show that the extracted signals can be used to accurately predict the subjective 

responses to the audio samples, within approximately +/- 0.25 MOS absolute accuracy in general.    

 

The same data can be re-plotted in the familiar scatter-plot format, as shown below in Figure 3a (S-

MOS), 3b (N-MOS), and 3c (G-MOS). 
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Figure 3a:  Model Fit on Training Data – Scatter-plot format, S-MOS.  Red symbols are for 

the pure suppressor.  The dashed grey line shows the best linear fit. 

   

Figure 3b:  Model Fit on Training Data – Scatter-plot format, N-MOS.  Red symbols are for 

the pure suppressor.  The dashed grey line shows the best linear fit. 
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Figure 3c:  Model Fit on Training Data – Scatter-plot format, G-MOS.  Red symbols are for 

the pure suppressor. The dashed grey line shows the best linear fit. 

The results for the pure suppressor, from COM 12 – C 184, are color-coded separately, as the 

subjective test conditions for these differed somewhat from the eight training tests described in Table 

1.   These results were obtained using a different speech sample.  Also, the MRNU reference system 

was used for that subset. 

The fit to the training set is generally fairly good, with correlation of 0.97 to 0.98 and RMSE of 0.15 to 

0.18 across the 408 training conditions.   As a subset, the fit is slightly less good on the 72 conditions 

reported in COM 12 – C 184.  Note that because the reference conditions were different, the 

remapping described in the Appendix was not applied to these data. 
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5.  Results – Preliminary Validation Set 

A validation dataset was collected for seven commercially available narrowband handsets.  Three 

noise types were tested as listed in Table 2. 

Table 2  Noise names and descriptions for validation set 

Noise Type 

Name 
Description EG 202 396-1 Filename 

Babble Recording in a pub Pub_Noise_binaural_V2 

Car Recording at the driver’s position Fullsize_Car1_130kmh_binaural 

Music Rock music, guitar and drums n/a 

The speech source for the validation data was different from that used in training, and was also 

provided by Dynastat.  It consists of 32 sentences, 4 from each of 4 male and 4 female talkers, all 

native speakers of American English.  Each sentence was normalized to -26 dBov Active Speech 

Level.   Four additional sentences were added to the beginning of the 32 test sentences to 

accommodate any convergence in processing; these 4 sentences were not used in listening tests or 

algorithm validation.  

The room set up used for acoustic reproduction of noise and speech is consistent with ETSI EG 202 

396-1, and as described in P.835 Amendment 1 Appendix III.  The speech was played through an 

equalized artificial mouth of HATS, at a level of -4.7dBPa at MRP.   Two SNRs were used, 3 and 

18dB, with the speech level measured according to P.56, and with A-weighting for the noise level.  

For each handset, the SNR values were set by adjusting the noise level at the primary microphone of 

the device.  Narrowband calls were simulated using a Rohde & Schwarz CMU-200, with speech 

service provided by AMR-NB codec at 12.2kbps mode rate.   

The required signals were captured acoustically at the primary microphone of each device under test, 

and electrically from the output of the CMU-200.  For each device, the output to clean speech was 

used to estimate the sending frequency characteristic, which then was used to filter the noisy mix.  For 

each device, the time delay of the output signal was estimated using cross-correlation with the input 

signal, and used to time-align the output signal with respect to the input, prior to processing by the 

model. 

The results for the validation set are shown as scatter plots, in Figures 4a (S-MOS), 4b (N-MOS), and 

4c (G-MOS). 
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Figure 4a:  Validation results, S-MOS, for seven phones under conditions in Table 2.  Grey 

dashed line is best linear fit. 

 

Figure 4b:  Validation results, N-MOS, for seven phones under conditions in Table 2. Grey 

dashed line is best linear fit. 
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Figure 4c:  Validation results, G-MOS, for seven phones under conditions in Table 2. Grey 

dashed line is best linear fit. 

6.  Further Work Required 
 

The model appears to have sufficiently good accuracy on the training set, but it is clearly not yet 

completely adequate on real devices, particularly for S-MOS.  For some real devices, the results show 

an offset which has not yet been accounted for.  The immediate future work is to determine the source 

of the offset and build that into the model.  To do that, more controlled validation data will be needed 

with a larger variety of devices.  

As noted earlier, this version of the algorithm does not yet explicitly include features intended to 

account for aspects of voice processing apart from noise suppression.  Such processing would include 

speech codecs and time-varying gain such as multi-band dynamic range compression.  The 

preliminary validation shows fairly good performance in the presence of one speech codec, AMR-NB 

12.2kbps, and for real devices that likely incorporate processing in addition to noise suppression. 

Finally, the dataset and algorithm reported here and earlier are narrowband.  Extension to wideband is 

clearly necessary to support deployed wideband telephony systems. 

7.  Summary 
 

There is a need in the industry for an accurate objective predictor of the performance of high-

performance noise suppressors, standardized at ITU-T.  This contribution demonstrates feasibility of 

an approach that can predict SIG, BAK, and OVRL scores (SMOS_LQO, NMOS_LQO, and 

GMOS_LQO) obtained using the P.835 Amendment 1 Appendix III methodology, with both quasi-

stationary and non-stationary distracters at SNRs of 0, 6, 12, and 24dB, with an accuracy of +/- 0.2 

MOS on the training set (408 points with a hybrid canceller followed by a constant spectral 



- 10 - 

COM 12 – C 288 – E 

ITU-T\COM-T\COM12\C\288E.DOC 

subtraction-type suppressor). Reduced absolute accuracy but good monotonicity properties are 

demonstrated on the preliminary validation set (42 points with a variety of non-constant suppressor 

strategies implemented in commercially available devices).  Further work is needed to collect larger 

validation data sets and extend to wideband. 
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Appendix:  Remapping based on reference conditions 

The eight data training data sets were each obtained with different listening panels.  Some differences in 

response patterns can be identified by examining scores for the reference conditions.  Figure A1 shows the 

scores across all eight panels for the reference conditions where only the Noise Suppressor reference is 

varying, and background noise is not added.  Note that the BAK scores tend to be quite high, even at the 

most distorted NS Levels.  This is in contrast to behavior observed for MNRU references, and is the 

motivation for the proposed NS reference system described in [4]. 

 

Figure A1.  Scores across eight panels, NS Level varies, no additive noise. 

Similarly, Figure A2 shows the scores across all eight panels for the reference conditions where pink noise is 

added.  The reduction in SIG at low levels of noise reflects the noise masking noted in Figure 2 above. 

  

Figure A2.  Scores across eight panels, additive noise varies, no NS degradation. 
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Finally, Figure A3 shows the scores across all eight panels for the reference conditions where NS level and 

noise co-vary. 

  

Figure A3.  Scores across eight panels, additive noise and NS level co-vary. 

While the trends across all panels are consistent, there are some variations between panels.  Standard practice in such 

cases is to treat the variation as random.  The simplest remapping is to compute the mean scores for reference 

conditions across all panels, and then find a linear remapping based on the differences between each panel’s responses 

to reference conditions and the mean response to reference conditions across panels.  A remapping is computed 

separately for SIG, BAK, and OVRL.  The same remapping is then applied to responses to test conditions for each 

panel.  No other remappings are used. 

This approach is commonly used by Global Analysis Labs charged with combining and analyzing results from multiple 

Test Labs.  While it does require that the reference conditions be common to all tests, it has the advantage of being 

well-defined and based on observations, rather than approaches that are purely ad hoc or based on hypothesized 

constructs.  

An example of the effect of the remapping is shown in Figure A4, as a scatter plot for G-MOS (OVRL) with mapped 

scores plotted against raw scores. 
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Figure A4.  Scatter plot of mapped versus unmapped scores for reference conditions. 

 

 

As can be seen in Figure A4, the remapping does not affect the mean across-panel ratings.  The linear 

mapping can be seen to generally reduce the overall variation across panels.  For scores near limits (1 or 5), 

the remapping can, in some cases, produce results that would exceed limits, but in these cases the bounding 

value is used. 

 

 

______________ 


