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Abstract – The Schrodinger Hydrogen Atom does not explain spin or fine structure, 

and has wavefunctions with cusps at the origin.  The Dirac Hydrogen Atom explains 

spin and fine structure, but does not explain Lamb Shift, and has wavefunctions that 

are singular at the origin.  Quantum Electrodynamics (QED) explains Lamb Shift but 

appears to be silent on how the wavefunctions are affected and whether the 

wavefunction singularities are removed.  In this work, we use perturbation analysis to 

show that the Lamb Shift is consistent with electron charge spreading inside the half-

reduced Compton Wavelength, and we develop a novel numerical technique for 

solving the Dirac Hydrogen problem with a modified Coulomb potential, and use it to 

find the form of the modified Dirac Hydrogen wavefunctions.  We show that the 

singularity at the origin of the Dirac Hydrogen wavefunction is eliminated, with a 

small amount of charge density near the origin displaced radially outward.  The large 

component is made continuous at the origin, and the small component is driven to zero 

at the origin.  The near-constant behavior of the Bethe Logarithm out to its asymptotic 

limit as principal quantum number 𝒏 → ∞ leads to a novel suggestion that this charge 

spreading for a bound electron in a Hydrogen Atom may also occur for a free electron.  

We also show novel 3D visualizations of numerical Dirac equation simulations.    
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1. Introduction 

 

Our modern understanding of the electron is based on the Dirac Equation (Dirac, 1928), which 

predicts Hydrogen energy levels up to the level of fine structure, and Quantum Electrodynamics 

(QED) (Feynman, 1948), which provides additional small energy level corrections to account for 

the Lamb Shift (Lamb and Retherford, 1948) and other important refinements.  In QED, the Lamb 

Shift is understood as based on electron self-interaction, in which the electron “continuously 

emits and absorbs virtual photons, and as a result its electric charge is spread over a finite volume 

instead of being pointlike.” [Eides, Grotch, and Shelyuto, 2007]  But QED is focused on computing 

the energy levels in a momentum space treatment using perturbation analysis, and appears to be 

silent on how exactly the charge is spread over that small volume in position space.   

 

Can we interpret this charge spreading as an effective localized charge distribution based on the 

electron wavefunction?  What is the charge distribution in position space, and exactly how large 

is the volume over which the charge is spread?  What is the three-dimensional shape of the 

distribution?  Is there some internal motion to this charge distribution?  Does this distribution 

change size or shape, or move differently, depending on whether the electron is free or bound in 

an atom, or how tightly it is bound?  The wavefunctions for the Dirac Hydrogen atom are known 

exactly in closed form, but they have singularities at the nucleus (Darwin, 1928). We know that 

QED provides the necessary Lamb Shift correction, but does it also tame the singularities in the 

wavefunction at the nucleus of the atom?  If so, what is the shape of the corrected wavefunction 

near the nucleus?  With the exception of Welton (1948), who gave an early, informal argument 

about the mean-square fluctuations in the position of the electron, mainstream QED literature 

appears to be silent on all of these points.  

 

If we had definitive answers to these questions, we could claim to have an understanding of the 

behavior of the electron on very small spatial scales, such that its effect is evident in the vicinity 

of the atomic nucleus, not just an accurate assessment of its energy.  And furthermore, we hope 

that a better understanding of the small-scale behavior of the electron might reveal deeper 

insights into the physical process of photon absorption and emission in quantum transitions, 

since we expect that a correct analysis of a quantum transition will require corrected, non-singular 

Dirac wavefunctions for both the initial and final state of the atom.   

 

The purpose of this paper is to examine what insights may be inferred about this small-scale 

electron behavior from existing experimental data and QED theory. 

 

2. Possible Charge Distributions 

 

At the present time, there is no definitive accepted theory that would establish the form of the 

localized electron charge distribution corresponding to the dominant QED self-interaction and 

vacuum polarization effects.  In the absence of such a definitive theory, let us consider various 
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proposals that have been put forth in the literature; by examining of all of them together, we will 

see several important common properties which we may expect to hold true for the final, correct 

theory. 

 

2.1. Charged Shell Distribution inspired by Hestenes’ Space-Time Algebra 

 

David Hestenes (2010) uses his Space-Time Algebra to reformulate the solution to the Dirac 

Equation in the canonical form 𝜓 =  (𝜌𝑒𝑖𝛽)
1

2𝑅,  which includes a statistical charge distribution 𝜌.  

Later, he describes a free electron as a point charge moving on a helical path with a “zitter” radius 

of 𝑟𝑧 = 𝐶

2
, where 𝐶 =

ℏ

𝑚𝑐
 is the Reduced Compton Wavelength for the electron.   

 

We begin by exploring the hypothesis, following Hestenes, that an electron is in a very fast 

circular or helical motion about its center of mass with radius 𝑟𝑧.  In a Hydrogen atom, assuming 

a spin-½ precessing motion, we hypothesize that the net result is that, from the frame of reference 

of the nucleus of a Hydrogen atom, the charge appears to be distributed in very fast motion on a 

small sphere of radius 𝑟𝑍 – we will call this the Charged Shell charge distribution.  This leads to 

a charge probability distribution of 𝜌(𝑟) =
𝑞

4𝜋𝑟𝑍
2 𝛿(𝑟 − 𝑟𝑍), which leads to a modified Coulomb 

potential of  

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0 Max(𝑟, 𝑟𝑍)
 

which was first analyzed by Wannier (Cutoff Coulomb Potential, 1943).  After a first-order 

perturbation analysis, this modified potential leads to agreement with existing QED theory on 

the leading term of the Lamb Shift when 

𝑟𝑍 ≈
𝐶

2
(0.38126) 

We note that this radius is smaller than Hestenes’ proposed zitter radius by a factor of about 
1

2.623
. 

 

2.2. Imaginary Charged Ring inspired by Barut and Bracken’s Zitterbewegung Analysis 

 

Similarly, Barut and Bracken [1981] re-examined Zitterbewegung and offered an interpretation 

of the electron as a “massless charge performing a complicated motion around a center of mass”.  

In their model, the charge moves in a circle of radius 𝑟𝑍 in two hidden spatial dimensions.  This 

leads to a charge probability distribution of 

𝜌(𝑟) =
𝑞

4𝜋𝑟𝑍
2 𝛿(𝑟 − 𝑖𝑟𝑍), 

which leads to a modified Coulomb potential of 

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0√𝑟2 + 𝑟𝑍
2
 

which was first analyzed by Patil (Second-Order Truncated Coulomb Potential, 1981).  After a 

first-order perturbation analysis, this modified potential leads to agreement with existing QED 

theory on the leading term of the Lamb Shift when 
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𝑟𝑍 ≈
𝐶

2
∗ (0.082364) 

We note that this radius is smaller than Hestenes’ proposed zitter radius by a factor of about 
1

12.14
. 

 

2.3. Gaussian Charge Density 

In this model, the charge would have a 3D Gaussian distribution because it is being buffeted by 

virtual photons in a kind of Brownian Motion.  Recent work by Bracken [2006, 2012] has made a 

connection between the Dirac Equation and Quantum Random Walks, which may appear to 

support the idea of a Gaussian charge distribution.   This leads to a charge probability distribution 

of 

𝜌(𝑟) =
1

2√2𝜋3 2⁄ 𝑟𝑍
3  𝑒

−
𝑟2

2𝑟𝑍
2

, 

which leads to a modified Coulomb potential of  

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0𝑟
Erf (

𝑟

√2 𝑟𝑍

)  . 

After a first-order perturbation analysis, this modified potential leads to agreement with existing 

QED theory on the leading term of the Lamb Shift when 

𝑟𝑍 ≈
𝐶

2
(0.21885) 

Details of the perturbation analysis for the Gaussian Charge Density are given in the Appendix. 

 

2.4. Exponential Charge Density 

In this model, the charge would have an exponential distribution, as though in the Spherical 

Harmonic ground state of an attracting charge, possibly represented by the “small component” 

of the Dirac Equation solution, which represents a negative energy solution and could possibly 

be seen as representing a virtual positron associated with the electron.  This leads to a charge 

probability distribution of 

𝜌(𝑟) =
𝑞

𝜋𝑟𝑍
3 𝑒

−
2𝑟

𝑟𝑍, 

which leads to a modified Coulomb potential of  

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0𝑟
(1 − 𝑒

−
2𝑟
𝑟𝑍 (1 +

𝑟

𝑟𝑍
)) 

After a first-order perturbation analysis, this modified potential leads to agreement with existing 

QED theory on the leading term of the Lamb Shift when 

𝑟𝑍 ≈
𝐶

2
(0.21885) 

In Table 1, we give a summary of the Charge Distributions, Modified Coulomb Potentials, and 

Characteristic Radius which corresponds to the leading term of the Lamb Shift.  In Figure 1, we 

plot the Modified Coulomb Potentials corresponding to the leading term of the Lamb Shift. 
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Charge Distribution 

Type 

Charge Distribution and 

Modified Coulomb Potential 

Characteristic Radius 

to match Lamb Shift 

Point Charge 

𝜌(𝑟) = 𝑞𝛿(𝑟) 

𝑉(𝑟) = −
𝑞2

4𝜋𝜀0r
 

n/a 

Charged Shell 

𝜌(𝑟) =
𝑞

4𝜋𝑟𝑍
2 𝛿(𝑟 − 𝑟𝑍) 

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0 Max(𝑟, 𝑟𝑍)
 

𝑟𝑍 ≈
𝐶

2
(0.38126) 

Zitterbewegung  

Imaginary Ring  

𝜌(𝑟) =
𝑞

4𝜋𝑟𝑍
2 𝛿(𝑟 − 𝑖𝑟𝑍) 

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0√𝑟2 + 𝑟𝑍
2
 

𝑟𝑍 ≈
𝐶

2
(0.082364) 

Gaussian Charge 

Density 

𝜌(𝑟) =
𝑞

2√2𝜋3 2⁄ 𝑟𝑍
3

 𝑒
−

𝑟2

2𝑟𝑍
2
 

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0𝑟
Erf (

𝑟

√2 𝑟𝑍

) 

𝑟𝑍 ≈
𝐶

2
(0.21885) 

Exponential  

Charge Density 

𝜌(𝑟) =
𝑞

𝜋𝑟𝑍
3 𝑒

−
2𝑟
𝑟𝑍  

𝑉𝑚𝑜𝑑(𝑟) = −
𝑞2

4𝜋𝜀0𝑟
(1 − 𝑒

−
2𝑟
𝑟𝑍 (1 +

𝑟

𝑟𝑍
)) 

𝑟𝑍 ≈
𝐶

2
(0.21885) 

 

Table 1.  Charge Distributions, Modified Coulomb Potentials, and Characteristic Radii.   

Except for the Point Charge distribution, all of these proposals are consistent with the 

leading term of the Lamb Shift. 
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Figure 1.  (a) Charge Distributions, and (b) Modified Coulomb Potentials,  

consistent with the leading term of the Lamb Shift. 
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For all of the proposals, the Lamb Shift implies that the electron’s charge distribution in a bound 

state must be contained well inside a sphere whose radius is half the Reduced Compton 

Wavelength.  

So far, we can say that Lamb Shift implies tight localization of any of the charge density proposals 

for the bound state case, well within a radius of half the Reduced Compton Wavelength.  For this 

reason, we will use the term “Sub-Compton Electron Charge Density”.  

 

3. Analytic Solutions for Schrodinger and Dirac Wavefunctions 

 

The usual non-relativistic time-independent Schrödinger equation for the Hydrogen atom is 

ℏ2

2𝑚
∇2𝜓(𝑟, 𝜃, 𝜙) + (𝐸 − 𝑉(𝑟))𝜓(𝑟, 𝜃, 𝜙) = 0  , 

where  𝜓(𝑟, 𝜃, 𝜙) is the single-component wavefunction in spherical coordinates,  E is the energy, 

m is the mass of the electron, and V(r) is the central potential due to the positively charged 

nucleus.   The usual assumption is that the nucleus is a non-moving point charge, which implies 

an infinitely heavy nucleus with infinitely high charge density in zero volume, leading to the 

central Coulomb potential 

𝑉(𝑟) =  −
𝑞2

4𝜋𝜀0𝑟
= −

ℏ2

𝑚𝑎0𝑟
 , 

which is obviously singular at the origin. The wavefunction solutions for the non-relativistic 

Schrodinger equation are well-known, and shown for the first few quantum states in Table 2: 

 

State Normalized Radial Solution Normalized Wavefunction Solution 

1S  𝑅1𝑆(𝑟) =
2

𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 𝜓1𝑆(𝑟) =

1

√𝜋𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 

2S 𝑅2𝑆(𝑟) =
1

2√2𝑎0
3 2⁄

(2 −
𝑟

𝑎0
) 𝑒

−
𝑟

2𝑎0 𝜓2𝑆(𝑟) =
1

4√2𝜋𝑎0
3 2⁄

(2 −
𝑟

𝑎0
) 𝑒

−
𝑟

2𝑎0 

2P 𝑅2𝑃(𝑟) =
1

2√6𝑎0
3 2⁄

𝑟

𝑎0
𝑒

−
𝑟

2𝑎0 𝜓2𝑃(𝑟) =
1

4√2𝜋𝑎0
3 2⁄

𝑟 cos 𝜃

𝑎0
𝑒

−
𝑟

2𝑎0 

 

Table 2.  First few solutions for Schrodinger Hydrogen Atom. 

 

The usual relativistic time-independent Dirac equation for the Hydrogen atom is 
 

(−𝑐(𝛼𝑥𝑝𝑥 + 𝛼𝑦𝑝𝑦 + 𝛼𝑧𝑝𝑥) − 𝛽𝑚𝑐2)Ψ + (𝐸 − 𝑉(𝑟))Ψ = 0 
 

where  Ψ is the four-component (bi-spinor) wavefunction, the non-commuting matrices are 

defined conventionally as 
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 𝛼𝑥 = [

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

],     𝛼𝑦 = [

0 0 0 −𝑖
0 0 𝑖 0
0 −𝑖 0 0
𝑖 0 0 0

],      𝛼𝑧 = [

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

],      𝛽 = [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

],  

 

 

Following Landau and Lifshitz, after separation of variables 

Ψ(𝑟, 𝜃, 𝜙) = (
𝜙(𝑟, 𝜃, 𝜙)

𝜒(𝑟, 𝜃, 𝜙)
) = (

𝑓(𝑟)Ω𝑗𝑙𝑚(𝜃, 𝜙)

(−1)
1

2
(1+𝑙−𝑙′) 𝑔(𝑟)Ω𝑗𝑙′𝑚(𝜃, 𝜙)

), 

where  𝑙 = j ±
1

2
  and  𝑙′ = 2j − 𝑙.  The radial part of the equation is  

𝑓′(𝑟) +
1 + 𝜅

𝑟
 𝑓(𝑟) −  

1

ℏ𝑐
(𝐸 + 𝑚𝑐2 − 𝑉(𝑟))𝑔(𝑟) = 0 

𝑔′(𝑟) +
1 − 𝜅

𝑟
 𝑔(𝑟) +  

1

ℏ𝑐
(𝐸 − 𝑚𝑐2 − 𝑉(𝑟))𝑓(𝑟) = 0 

where 

𝜅 = − (𝑗 +
1

2
) = −(𝑙 + 1)   for  𝑗 = l +

1

2
 

         = + (𝑗 +
1

2
) = 𝑙                   for  𝑗 = l −

1

2
   . 

The well-known energy solution is  

𝐸𝑛𝑙𝑗 =
𝑚𝑐2

√
1 +

𝛼2

(𝑛 − (𝑗 +
1
2) + √(𝑗 +

1
2)

2

− 𝛼2)

2

 

where the Fine Structure Constant  𝛼  is defined as 

𝛼 =
𝑞2

4𝜋𝜀0ℏ𝑐
 ≈

1

137.035999074
 . 

Landau and Lifshitz (1982) provide the full general equations for the normalized radial 

wavefunction solutions: 

𝑓(𝑟) =
(2𝜆)

3
2

Γ(2𝜆 + 1) √

(𝑚𝑐2 + 𝐸)Γ(2𝜆 + 𝑛𝑟 + 1)

4𝑚𝑐2 (
𝛼𝑚𝑐2

𝜆
) (

𝛼𝑚𝑐2

𝜆
− 𝜅) ⋅ 𝑛𝑟!

(2𝜆𝑟)𝛾−1𝑒−𝜆𝑟

× ((
𝛼𝑚𝑐2

𝜆
− 𝜅) 𝐹1

 
1(−𝑛𝑟; 2𝜆 + 1; 2𝜆𝑟) − 𝑛𝑟 𝐹1

 
1(1 − 𝑛𝑟; 2𝜆 + 1; 2𝜆𝑟 )) 
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𝑔(𝑟) = −
(2𝜆)

3
2

Γ(2𝜆 + 1) √

(𝑚𝑐2 − 𝐸)Γ(2𝜆 + 𝑛𝑟 + 1)

4𝑚𝑐2 (
𝛼𝑚𝑐2

𝜆
) (

𝛼𝑚𝑐2

𝜆
− 𝜅) ⋅ 𝑛𝑟!

(2𝜆𝑟)𝛾−1𝑒−𝜆𝑟

× ((
𝛼𝑚𝑐2

𝜆
− 𝜅) 𝐹1

 
1(−𝑛𝑟; 2𝜆 + 1; 2𝜆𝑟) + 𝑛𝑟 𝐹1

 
1(1 − 𝑛𝑟; 2𝜆 + 1; 2𝜆𝑟 )) 

where  

𝜆 =
𝑚𝑐2√1 − (

𝐸
𝑚𝑐2)

2

ℏ𝑐
 

𝛾 = √𝜅2 − 𝛼2 

𝑛𝑟 = 𝑛 − |𝜅| 

and the normalization conditions are 

∫ (𝑓(𝑟)2 + 𝑔(𝑟)2) 𝑟2 𝑑𝑟
∞

0

= 1       and        ∫ ∫ ∫  |Ψ𝑛,𝑙|
2

  𝑟2 sin 𝜃 𝑑𝜙 𝑑𝜃 𝑑𝑟

2𝜋

0

𝜋

0

∞

0

 = 1 

3.1.1. 1S½  state 

In the particular case of the 1S½  ground state where 𝑛 = 1, 𝑙 = 0, and 𝑗 =
1

2
 , we have  𝑙′ = 1, 

𝜅 = −1,  𝑛𝑟 = 0, which leads to 

𝐸1𝑆½ = 𝑚𝑐2√1 − 𝛼2 

Substituting those into the radial equations leads to the full system of equations and boundary 

conditions  

𝑓1𝑆½
′(𝑟) −  (

1 + √1 − 𝛼2

𝛼𝑎0
+

𝛼

𝑟
) 𝑔1𝑆½(𝑟) = 0

𝑔1𝑆½
′(𝑟) +

2

𝑟
 𝑔1𝑆½(𝑟) +  (

−1 + √1 − 𝛼2

𝛼𝑎0
+

𝛼

𝑟
) 𝑓1𝑆½(𝑟) = 0 

𝑓1𝑆½(∞) = 0

𝑔1𝑆½(∞) = 0

∫ (𝑓1𝑆½(𝑟)2 + 𝑔1𝑆½(𝑟)2) 𝑟2 𝑑𝑟
∞

0

= 1

 

 

The ground state radial solutions are 
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𝑓1𝑆½(𝑟) =
2

𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 (

2𝑟

𝑎0
)

−1+√1−𝛼2

√
1 + √1 − 𝛼2

Γ(1 + 2√1 − 𝛼2)
 

𝑔1𝑆½(𝑟) = −
𝛼

1 + √1 − 𝛼2
𝑓1𝑆½(𝑟) ≈ −

𝛼

2
𝑓1𝑆½(𝑟) 

Note that 

√
1 + √1 − 𝛼2

Γ(1 + 2√1 − 𝛼2)
≈ 1.000018 

Because |𝑔(𝑟)| is smaller than |𝑓(𝑟)| by about a factor of  
𝛼

2
, or about 

1

274.072
 , 𝑓(𝑟) is often called 

the large component, and 𝑔(𝑟) is often called the small component.  Note that since 

𝑅1𝑆(𝑟) =
2

𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 

it follows that 

𝑓1𝑆½(𝑟) = 𝑅1𝑆(𝑟) (
2𝑟

𝑎0
)

−1+√1−𝛼2

√
1 + √1 − 𝛼2

Γ(1 + 2√1 − 𝛼2)
 

i.e., the Dirac radial solution is related to the Schrodinger radial solution in a fairly 

straightforward way.   

The full wavefunction solution for the relativistic Dirac equation for the ground state, including 

the angular bi-spinor components, for the electron spin-up and spin-down states, is given by 

Ψ1𝑆½𝑑𝑜𝑤𝑛 =
1

√𝜋𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 (

2𝑟

𝑎0
)

−1+√1−𝛼2

√
1 + √1 − 𝛼2

Γ(1 + 2√1 − 𝛼2)
 (

(
 0 
 1 

)

𝛼

1 + √1 − 𝛼2
( 𝑖 𝑒−𝑖𝜙 sin 𝜃

−𝑖 cos 𝜃
)

)   

Ψ1𝑆½𝑢𝑝 =
1

√𝜋𝑎0
3 2⁄

𝑒
−

𝑟
𝑎0 (

2𝑟

𝑎0
)

−1+√1−𝛼2

√
1 + √1 − 𝛼2

Γ(1 + 2√1 − 𝛼2)
 (

(
 1 
 0 

)

𝛼

1 + √1 − 𝛼2
(

𝑖 cos 𝜃
 𝑖 𝑒𝑖𝜙sin 𝜃

)
)   

 

Direct inspection of the Schrodinger and Dirac ground state solutions immediately reveals 

serious problems with both solutions.   In the Schrodinger case, the 𝑒
−

𝑟

𝑎0 term leads to a cusp at 

the origin, as shown in Figure 2.  In the Dirac case, the (
2𝑟

𝑎0
)

−1+√1−𝛼2

 term has a very small 

negative exponent, leading to a singularity at the origin, as pointed out by Darwin in 1928, and 

reiterated by Itzykson and Zuber (1980, p. 79).   
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Figure 2:  (a) Electron Charge Density for the Dirac Equation (singular) and Schrodinger 

Equation (cusp).   Neither of these well-known solutions are physically plausible near 

the origin. 

 

The Schrodinger and Dirac Hydrogen wavefunction solutions are foundational in modern 

physics education, but neither of these solutions are physically plausible, nor qualitatively or 

quantitatively correct, near the origin.  The QED literature corrects the energy levels but never 

shows how the wavefunctions are affected.  

 

The usual way to find the wavefunction, given a proposed modified potential, would be to use 

Perturbation Analysis.  However, since the problem is stiff, i.e., there are two very different spatial 

dimensions (the Bohr radius and the Compton radius), we found that Perturbation Analysis did 

not converge.  Therefore, to find the correct behavior, we must use a Numerical method to find a 

Dirac solution with a properly modified potential.   

 

4. Numerical Solution for Modified Dirac Wavefunction 

Hammerling et al. (2010) has developed a set of procedures for numerical solution of singular 

eigenvalue problems on semi-infinite domains, with emphasis on Sturm-Liouville problems in 

general, and with the time-independent Schrödinger equation for a central potential as a 

particular example.  Their standard approach is to truncate to a bounded interval, start with an 

initial educated guess of the eigenvalue (energy) and use a two-sided shooting method, integrating 

from 𝑟 = 0 outward, and from 𝑟 = 𝑟𝑚𝑎𝑥 inward, and adapting the eigenvalue until the two 

integrated halves match in value and derivatives at an intermediate point, leading to an energy 

value and a complete, continuous function that satisfies the differential equation and both 

boundary conditions.  We implemented this type of method for the Schrodinger case, and 

adapted it to the more difficult Dirac case. 

 

Electron  
charge density 
Dirac Equation 

𝜌1𝑆½(𝑟)  

Electron  
charge density 
Schrodinger Equation 

𝜌1𝑆(𝑟)  

singularity  

cusp  
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4.1.   Energy and Electron Wavefunction for the 1S½ state 

For the 1S½ state, the next step is to compute the new energy and electron wavefunction 

corresponding to this modified Coulomb potential  𝑉1𝑆½(𝑟).  We will first set up the problem, 

and then show the various methods we have used to solve the problem. 

        The energy level of the unmodified 1S½ ground state is 

𝐸1𝑆½ = 𝑚𝑐2√1 − 𝛼2 . 

Note that the relativistic energy includes the rest mass 𝑚𝑐2 which must be subtracted away 

before it can be compared to the non-relativistic energy. Because we have made a modification to 

the potential near the origin, we should expect that there should be a small change in the energy 

for a self-consistent wavefunction solution.  Let us define the modified energy 𝐸1𝑆½𝑚
 as a tiny 

fractional change to the original energy with the rest mass removed: 

𝐸1𝑆½𝑚
= (𝐸1𝑆½ − 𝑚𝑐2)(1 + 𝜀1𝑆½) + 𝑚𝑐2 

                         = 𝑚𝑐2 (1 + (−1 + √1 − 𝛼2) (1 + 𝜀1𝑆½)) 

                         = 𝑚𝑐2 (√1 − 𝛼2 + 𝜀1𝑆½ (−1 + √1 − 𝛼2)) 

where 𝜀1𝑆½ is a small, dimensionless quantity.  With this definition, we can expect an 

approximate value of 𝜀1𝑆½  ≈ −
1

1,000,000
  as in the non-relativistic case. 

        Substituting the previous expressions for 𝐸1𝑆½𝑚
 and 𝑉1𝑆½(𝑟) for the Gaussian Charge 

Distribution assumption leads to the Modified Ground State Equation (along with its boundary 

conditions and the charge normalization condition): 

 

𝑓1𝑆½𝑚
′ (𝑟) −  (

1 + √1 − 𝛼2 + 𝜀1𝑆½(−1 + √1 − 𝛼2)

𝛼𝑎0
+

𝛼

𝑟
𝐴1𝑆½(𝑟) ) 𝑔1𝑆½𝑚

(𝑟) = 0

𝑔1𝑆½𝑚
′ (𝑟) +

2

𝑟
 𝑔1𝑆½𝑚

(𝑟) +  (
−1 + √1 − 𝛼2 + 𝜀1𝑆½(−1 + √1 − 𝛼2)

𝛼𝑎0
+

𝛼

𝑟
𝐴1𝑆½(𝑟)) 𝑓1𝑆½𝑚

(𝑟) = 0

𝐴1𝑆½(𝑟) =
𝑉1𝑆½(𝑟)

𝑉(𝑟)
= Erf (

𝑟

√2 𝑟𝑍

)

𝑓1𝑆½𝑚
(∞) = 0

𝑔1𝑆½𝑚
(∞) = 0

∫ (𝑓1𝑆½𝑚
(𝑟)2 + 𝑔1𝑆½𝑚

(𝑟)2) 𝑟2 𝑑𝑟
∞

0

= 1

 

 

 

And the challenge is to solve for the fractional energy change 𝜀1𝑆½ and the wavefunctions 

𝑓1𝑆½𝑚
(𝑟)  and 𝑔1𝑆½𝑚

(𝑟). 
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4.1.1. Numerical solution for the 1S½ state 

We use the two-sided shooting method, adapted to the specific needs of the Relativistic case, with 

the coupled equations for 𝑓1𝑆½𝑚
(𝑟)  and 𝑔1𝑆½𝑚

(𝑟), similar to Silbar et al. (2010).  The solution 

will be determined by 𝜀1𝑆½ and the two additional free parameters  

                 gfratio(𝑟𝑚𝑖𝑛) =
𝑔1𝑆½𝑚

(𝑟𝑚𝑖𝑛)

𝑓1𝑆½𝑚
(𝑟𝑚𝑖𝑛)  

 ,           gfratio(𝑟𝑚𝑎𝑥) =
𝑔1𝑆½𝑚

(𝑟𝑚𝑎𝑥)

𝑓1𝑆½𝑚
(𝑟𝑚𝑎𝑥)  

 

For the original Dirac solution,  

gfratio(𝑟𝑚𝑖𝑛)  = gfratio(𝑟𝑚𝑎𝑥) = −
𝛼

1 + √1 − 𝛼2
 

Early experiments with the numerical solution of the Modified Ground State equations led 

directly to  

gfratio(𝑟𝑚𝑖𝑛)  = 0 ,                          gfratio(𝑟𝑚𝑎𝑥) = −
𝛼

1 + √1 − 𝛼2
 

as promising initial values, subject to joint optimization along with 𝜀1𝑆½.  This problem can be 

solved numerically using the following procedure: 

1. Goal of the procedure:  The procedure is designed to solve for 𝜀1𝑆½, gfratio(𝑟𝑚𝑖𝑛),  and 

gfratio(𝑟𝑚𝑎𝑥). 

2. Initialization:  Choose an initial value for 𝜀1:   We used −1.0 × 10−6.  Choose initial 

values  gfratio(𝑟𝑚𝑖𝑛)  = 0 , gfratio(𝑟𝑚𝑎𝑥) = −
𝛼

1+√1−𝛼2
 , where we defined 𝑟𝑚𝑎𝑥 = 30𝑟𝑐 and 

𝑟𝑚𝑖𝑛 =
𝑟𝑚𝑎𝑥

1000000000
.  We will also need two midpoints for continuity matching:  we used  

𝑟𝑚𝑖𝑑1 = 11𝑟𝑐 and 𝑟𝑚𝑖𝑑2 = 40𝑟𝑐. 

3. “Outward” and “Inward” shooting integrations:  Define the interval in which to perform 

the outward shooting-method integration for 𝑟 running from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑖𝑑2.  Define the 

interval in which to perform the inward shooting-method integration for 𝑟 running from 

𝑟𝑚𝑎𝑥 to 𝑟𝑚𝑖𝑑1.  Note that the two integrations overlap on the interval 𝑟𝑚𝑖𝑑1 to 𝑟𝑚𝑖𝑑2. The 

integrations can be done directly in Mathematica by NDSolve.  Each integration will 

produce trial wavefunctions 𝑓1𝑆½𝑚
(𝑟)  and 𝑔1𝑆½𝑚

(𝑟). 

4. Continuity and Charge Normalization Condition:  We now have a trial “outward” and 

“inward” numerical integrations done.  We scale the “inward” solution so that the 

“inward” 𝑓1𝑆½𝑚
(𝑟)  agrees with the “outward” 𝑓1𝑆½𝑚

(𝑟). We then numerically compute 

the charge normalization integral, using the “outward” solution from 𝑟𝑚𝑖𝑛 to 𝑟𝑚𝑖𝑑1, and 

the “inward” solution from 𝑟𝑚𝑖𝑑1 to 𝑟𝑚𝑎𝑥, and then scale the composite solution to 

normalize the charge.  At this point, we have a two-part normalized solution where the 

“inward” and “outward” parts match at 𝑓1𝑆½𝑚
(𝑟𝑚𝑖𝑑1 ),  but may not match at 

𝑔1𝑆½𝑚
(𝑟𝑚𝑖𝑑1 ), 𝑓1𝑆½𝑚

(𝑟𝑚𝑖𝑑2 ),  and 𝑔1𝑆½𝑚
(𝑟𝑚𝑖𝑑2 ).  To match these three additional 

conditions, we may need to adjust 𝜀1𝑆½, gfratio(𝑟𝑚𝑖𝑛),  and gfratio(𝑟𝑚𝑎𝑥).    

5. Inner Loop Iteration Condition:  We defined the difference solutions as the deviation 

between the modified solutions and the corresponding original Dirac solution: 

 𝑓1𝑆½𝑑
(𝑟) =  𝑓1𝑆½𝑚

(𝑟) −  𝑓1𝑆½(𝑟) 
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 𝑔1𝑆½𝑑
(𝑟) =  𝑔1𝑆½𝑚

(𝑟) −  𝑔1𝑆½(𝑟) 

 and the Error as 

        Error = ( 𝑔1𝑆½𝑑𝑜𝑢𝑡𝑤𝑎𝑟𝑑
(𝑟𝑚𝑖𝑑1 ) −  𝑔1𝑆½𝑑𝑖𝑛𝑤𝑎𝑟𝑑

(𝑟𝑚𝑖𝑑1 ))
2

+  ( 𝑓1𝑆½𝑑𝑜𝑢𝑡𝑤𝑎𝑟𝑑
(𝑟𝑚𝑖𝑑2 ) −  𝑓1𝑆½𝑑𝑖𝑛𝑤𝑎𝑟𝑑

(𝑟𝑚𝑖𝑑2 ))
2

+ ( 𝑔1𝑆½𝑑𝑜𝑢𝑡𝑤𝑎𝑟𝑑
(𝑟𝑚𝑖𝑑2 ) −  𝑔1𝑆½𝑑𝑖𝑛𝑤𝑎𝑟𝑑

(𝑟𝑚𝑖𝑑2 ))
2

 

which will vanish when the continuity condition is met, i.e., the “outward” and “inward” 

integrations agree, in both the f and g terms, at both points 𝑟𝑚𝑖𝑑1  and 𝑟𝑚𝑖𝑑2 .  Holding 

gfratio(𝑟𝑚𝑖𝑛) = 0 and gfratio(𝑟𝑚𝑎𝑥) = 1 constant, we used Mathematica’s NDSolve to find 

the minimum value of Error as a function of  𝜀1𝑆½.  We found the Minimum Error of 5.05 ×

10−19 at 𝜀1𝑆½ = −2.5424935 × 10−6.  Since the value of the Minimum Error is so close 

to zero, we concluded that the initial values of gfratio(𝑟𝑚𝑖𝑛) and gfratio(𝑟𝑚𝑎𝑥)  needed no 

further modification to find a completely self-consistent solution.   

 

The original Dirac electron charge density is given by 

         𝜌1𝑆½(𝑟) = 𝑞
(𝑓1𝑆½(𝑟)2 + 𝑔1𝑆½(𝑟)2)

4𝜋
 . 

The modified electron charge density is given by 

         𝜌1𝑆½𝑚
(𝑟) = 𝑞

(𝑓1𝑆½𝑚
(𝑟)2 + 𝑔1𝑆½𝑚

(𝑟)2)

4𝜋
 . 

The difference electron charge density is given by 

         𝜌1𝑆½𝑑
(𝑟) = 𝜌1𝑆½𝑚

(𝑟) − 𝜌1𝑆½(𝑟) . 

These charge densities are shown in Figure 3, illustrating that, relative to the original Dirac 

Solution, charge is displaced outward from the origin as in the non-relativistic case, and the 

singularity in the Original Dirac charge density is eliminated, in favor of a well-behaved 

“rounded top”. 
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Figure 3:  Continuity conditions for the 1S ½ numerical solution.  (a) “Outward” (blue) and 

“Inward” (green)  𝑓1𝑆½𝑑
(𝑟) difference solutions, matching at 𝑟𝑚𝑖𝑑1 and 𝑟𝑚𝑖𝑑2, which results 

in them matching everywhere. (b) “Outward” (blue) and “Inward” (green)  𝑔1𝑆½𝑑
(𝑟) 

difference solutions, matching at 𝑟𝑚𝑖𝑑1 and 𝑟𝑚𝑖𝑑2.   (c)  Corresponding Electron charge 

density differences from the original Dirac Solution, showing that charge lost near the 

origin is displaced outward from the origin, as in the non-relativistic case.  (d)  Detailed 

view of the Electron charge density deviations from the original Dirac Solution near the 

origin. (e)  Comparison of the Original Dirac Electron charge density, which has a 

singularity at the origin, to the modified charge density, which has the expected “rounded 

top” with no singularity.  

 

 

 
Figure 4:  The modified  𝑓1𝑆½𝑚

 and scaled 𝑔1𝑆½𝑚
 solutions, along with the original 

 𝑓1𝑆½ solution, at a variety of different scales.  (a) At this scale, we see the broadly exponential 

behavior of  𝑓1𝑆½𝑚
  and 𝑓1𝑆½ , and we see that  𝑔1𝑆½𝑚

 is driven to zero near the origin.  (b) At 

this scale, we see the slight modification of  𝑓1𝑆½𝑚
  relative to  𝑓1𝑆½  near the origin, and the 

large modification of  𝑔1𝑆½𝑚
 near the origin.  (c,d):   At these scales, we see further detail of 

the “rounded-top” behavior of  𝑓1𝑆½𝑚
  relative to  𝑓1𝑆½  near the origin.   

 

𝑓1𝑆½𝑑
(𝑟𝑚𝑖𝑑1 ) 

𝜌1𝑆½(𝑟) 

𝜌1𝑆½𝑚
(𝑟) 

 

(a)  
 

(b)  
 

(c)  
 

(d)  
 

(e)  
 

𝑓1𝑆½𝑑
(𝑟𝑚𝑖𝑑2 ) 

𝑔1𝑆½𝑑
(𝑟𝑚𝑖𝑑1 ) 

𝑔1𝑆½𝑑
(𝑟𝑚𝑖𝑑2 ) 

𝜌1𝑆½𝑑
(𝑟) 

 
𝜌1𝑆½𝑑

(𝑟) 

 

(a)                                         (b)                                           (c)                                       (d)  
 
 
 
 

𝑓1𝑆½ 

𝑓1𝑆½𝑚
 𝑓1𝑆½𝑚

 

𝑓1𝑆½ 
𝑓1𝑆½ 𝑓1𝑆½ 

𝑓1𝑆½𝑚
 𝑓1𝑆½𝑚

 

𝑔1𝑆½𝑚
 𝑔1𝑆½𝑚
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We have similarly performed the numerical analysis for the 2S½ solution of the Dirac Hydrogen 

Atom with the modified Coulomb potential for the Sub-Compton Gaussian Charge Distribution 

case, and we see very similar behavior as shown in Figure 5.   

 

  
Figure 5:  Summary of original Dirac charge probability density (red), Schrodinger charge 

probability density (magenta) and revised charge probability density plots for the Gaussian 

Charge Distribution case (blue).  The modified charge probability densities correspond to the 

correct energy shifts matching the Lamb Shift data and modern QED theory.  Note that the 

original Dirac charge probability density is singular at the origin, and the Schrodinger charge 

probability density has a cusp at the origin;  the modified charge probability density has a 

well-behaved “rounded top” at the origin. 

 

The composite numerical/analytic wavefunction solution is difficult to visualize in a single 

picture because the “stiff” nature of the problem gives the solution features on very short (𝑟𝑐) and 

on very long (𝑎0) spatial scales.  We will describe the general features using a conceptual but not-

to-scale diagram in Figure 4 to illustrate how the charge is redistributed relative to the familiar 

Schrodinger solution.  

 

𝜌2𝑆½(𝑟) 

𝜌2𝑆½𝑚
(𝑟) 

 

𝜌1𝑆½(𝑟) 

𝜌1𝑆½𝑚
(𝑟) 

 

𝜌1𝑆(𝑟) 𝜌2𝑆(𝑟) 
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Figure 6:  Conceptual diagram (not to scale) showing the general features of the modified 

ground state wavefunction  𝑅1𝑆𝑚(𝑟), with reference to the original ground state 

wavefunction  𝑅1𝑆(𝑟).  The difference wavefunction  𝑅1𝑆𝑑(𝑟) is shown in the lower panel.  

Differences have been magnified about 75X to show general features. 

 

The original wavefunction   𝑅1𝑆(𝑟) has a cusp at 𝑟 = 0.  The modified wavefunction   𝑅1𝑆𝑚
(𝑟) 

has a “rounded top” at a lower amplitude value, indicating that some charge has been lost near 

the origin.  At the crossover point, the modified wavefunction becomes larger than the original 

wavefunction, indicating that some charge has been displaced down the sides of the distribution.  

The same charge displacement features appear in the difference wavefunction   𝑅1𝑆𝑑
(𝑟) in the 

lower panel.   

 

In other work (not detailed here) we have developed closed-form approximations to the modified 

Hydrogen wavefunction and charge densities, in terms of Confluent Hypergeometric Functions.  

This work may appear in a subsequent publication. 

 

We have computed the Hydrogen wavefunctions and charge probability density functions for 

the Exponential Charge distribution assumption and found the results to be qualitatively similar 

to the Gaussian case, i.e. well-behaved, rounded top, small component driven to zero near the 

origin, and no singularity or cusp at the origin.  We expect similar behavior for the other two 

distributions.    

Original 
Charge Density 

𝑞𝑅1𝑆
2 (𝑟) 

Modified 
Charge Density 

𝑞𝑅1𝑆𝑚
2 (𝑟) 

Charge lost near the peak 
 

Difference 
Wavefunction
𝑅1𝑆𝑑

(𝑟) 

Conceptual Diagram 

Differences magnified about 75X 

Not To Scale 

 

 
 

Charge displaced down the 
sides 

Crossover point 

Crossover point 
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5. Implications for a Free Electron 

 

Existing QED theory for the leading (non-relativistic) term of the Lamb Shift is 

∆𝐸< = 𝑚𝑐2
4

3𝜋

(𝑍𝛼)4𝛼

𝑛3
ln (

𝑚𝑐2

𝑘0(𝑛, 𝑙)
)  

where ln 𝑘0(𝑛, 𝑙) is the Bethe Logarithm, which has been tabulated (Jentschura and Mohr, 2005) 

for the commonly used values of 𝑛 and 𝑙.   

n 𝐥𝐧
𝒌𝟎(𝒏, 𝟎)

𝐑𝐲
 𝐥𝐧

𝒌𝟎(𝒏, 𝟏)

𝐑𝐲
 

1 2.984129 --- 

2 2.811770 -0.0300167 

3 2.767664 -0.0381902 

4 2.749812 -0.0419549 

20 2.723967 -0.0486082 

200 2.722668 -0.0490495 

∞ 2.722654 -0.0490545 
 

Table 3.  Bethe Logarithms.  The highlighted values (2S, 2P) are used  

in the Lamb Shift calculation. 
 

 

 

Bethe Logarithm 

 
 

   ln
𝑘0(𝑛, 0)

Ry
≈ 2.7226543  +

0.5

𝑛2
−

0.25

𝑛3
+

0.0125

𝑛4
 

 

 

Rest Energy / Bethe Logarithm 

 
 

   ln (
𝑚𝑐2

Ry
) ≈ 10.5336344 

   ln (
𝑚𝑐2

𝑘0(𝑛, 0)
) ≈ 7.8109801  −

0.5

𝑛2
+

0.25

𝑛3
−

0.0125

𝑛4
 

 

 

Figure 4.  Bethe Logarithms in different useful forms. 

n  

ln
𝑘0(𝑛,0)

Ry
  

n  

 ln (
𝑚𝑐2

𝑘0(𝑛,0)
)  
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For our purposes, it is most convenient to use a series approximation for the Rest Energy / Bethe 

Logarithm ratio: 

∆𝐸< = 𝑚𝑐2
4

3𝜋

(𝑍𝛼)4𝛼

𝑛3
(7.8109801  −

0.5

𝑛2
+

0.25

𝑛3
−

0.0125

𝑛4
) 

which shows the usual 
1

𝑛3 dependence, along with the ln (
𝑚𝑐2

𝐾0(𝑛,𝑙)
)  term, which deviates from its 

asymptotic value of 7.8109801 by at most 3.3%. 
 

The 
1

𝑛3 dependence captures the strong effect of the principal quantum number on the Lamb Shift, 

which is much larger for small 𝑛 because of the density of the wavefunction at the origin for the 

S states, which becomes much less dense for large 𝑛.  We interpret the ln (
𝑚𝑐2

𝐾0(𝑛,𝑙)
) term as related 

to the size of the electron’s charge distribution, and this term is largely constant with 𝑛, but has a 

small (3.3%) compression for the smallest values of 𝑛, relative to the asymptotic value, which we 

interpret as related to the free electron case.   Therefore, we believe that the conclusions we draw 

about the size of the electron’s charge distribution from the low-𝑛 bound states will closely apply 

to the free electron case, within a few percent.  The Lamb Shift from bound states tells us within 

a few percent the size of the free electron charge distribution.  (Note that this assumes that a free 

electron behaves like an electron in a bound S state with 𝑛 = ∞ .   If this assumption is incorrect, 

we could instead have an error as large as  
10.53−7.55

7.81
= 38.2% ). 

 

So far, we have several proposed charge distributions, each of which must be tightly localized 

within the half-Reduced Compton Wavelength, but no way yet of preferring one over the others.  

We can see two ways to try to determine the correct charge distribution: 

 

1. Derive the charge distribution from direct knowledge of the components of the Bethe 

Logarithm.  Such an approach would directly tie the QED derivation of the Lamb Shift to 

the detailed form of the charge distribution.  We believe this would require cooperation, 

collaboration, or support from physicists who have the existing knowledge and software 

tools to analyze the Bethe Logarithm components, i.e. Jentschura and Mohr. 

2. Another way to choose would be to look for stability and persistence of the candidate 

charge distributions.  A stable charge distribution that persists over time in the free 

electron case would be a greatly stronger candidate than one that dissipates over time. 

 

In the following section 6, we attempt direct numerical simulation of 3D Dirac Equation in Free 

Space, with different initial conditions (Sub-Compton Gaussian, or Sub-Compton Spherical 

Shell), to see if they lead to stable charge distributions. 
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6. Free Electron Numerical Simulations – Prior 1D, 2D 

 

Thaller [2005] has provided a Mathematica Toolbox for simulations and visualizations of the 

Dirac Equation, and a set of QuickTime animations for the 1D and 2D cases.  He focuses on 

Gaussian Wavepacket initial conditions for a Free Electron, showing how those states evolve over 

time.  And he gives examples of positive-energy initial conditions, which do not exhibit 

Zitterbewegung, and mixed-energy initial conditions, which do exhibit Zitterbewegung.  The key 

relevant examples are shown in Figures 3 and 4. 

The key messages from these figures are: 

 Gaussian distributions disperse.  If they are not initially tightly localized (Fat initial 

distributions), they disperse slowly.   If they are initially tightly localized (Narrow initial 

distributions), they disperse with shock fronts moving at the speed of light.   

 Positive-only initial distributions do not exhibit Zitterbewegung. 

 Mixtures of positive and negative energy states exhibit Zitterbewegung – jittering motion, 

both in the mean position vs. time, and in the wobbly, ripply behavior of the Wavepacket 

envelope as it spreads. 

 The dispersion in the 2D case takes the form of an initial Gaussian spreading out in a ring, 

much like the outward surface wave from a pebble dropped in a pond.  In the first 2D 

example given by Thaller, a positive-energy initial condition is used, and the wavefront 

envelope spreads out with circular symmetry.  In the second example, a mixed-energy 

initial condition is used, and the wavefront envelope spirals outward, in an expanding 

and spinning motion. 
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6.1. 1D  

 

1D: 

Positive-Energy Case (no Zitterbewegung), 

Fat initial distribution 

 
 

1D: 

Positive-Energy Case (no Zitterbewegung) 

Narrow initial distribution (Shock Fronts) 

 
 

1D: 

Mixed Energy Case (Zitterbewegung): 

 
 

Mean position vs. Time 

 

 

Figure 3.  Time evolution of Gaussian Wavepackets for the Dirac Equation (1D case).   

The x-axis is distance in units of  𝐶. 
 

 

 

 

Slow dispersion 

Speed-of-light 
Shock Fronts 

Zitterbewegung 
Wobbly, Ripply 

dispersion 
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6.2. 2D 

 

2D: 

Positive Energy Case (no Zitterbewegung), Fat initial distribution: 

 

 
 

Mixed Energy Case (Zitterbewegung, spinning dispersion), Fat initial distribution: 

 

 
 

 

Figure 4.  Time evolution of Gaussian Wavepackets for the Dirac Equation (2D case).   
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Thaller presents these as illustrative behaviors of the Dirac Equation in 1D and 2D.  But he doesn’t 

give 3D examples, and he doesn’t discuss the physical implications of the dispersion.  At face 

value, these illustrations would seem to suggest that an electron (as represented by a Gaussian 

Wavepacket in the Dirac Equation in 1D and 2D) is unstable – it disperses until it is everywhere.   

 

7. Free Electron Numerical Simulations – New 1D, 2D, 3D  
 

The previous analysis suggested that we are looking for a stable charge distribution that fits 

within a Reduced Compton Wavelength in 3D.  In Thaller’s terms, this would correspond to a 3D 

Dirac Equation simulation with positive-only energies, highly confined (initial distribution 

entirely inside radius of a Half-Reduced Compton Wavelength).  Thaller did not do this 

simulation.  His closest examples were 1D Narrow, or 2D Fat, but nothing like 3D Super-Narrow.  

It is possible that there is a surprise waiting in the numerical simulations that no-one has 

anticipated based on analytical reasoning.  So the next steps would appear to be to do the 3D 

Dirac Equation numerical simulations for the Super-Narrow case.   

A best case result would be that an initial very tight Gaussian distribution would disperse 

outward in a 3D wavefront (shock front) until it reaches a spherical shell of radius 

(approximately) 𝑟𝑍 ≈ 𝐶

2
(0.38126), and then stabilizes at that distribution, finding a kind of stable 

attractor.  If the numerical simulations showed this, it would be a remarkable numerical result, 

and would justify looking for an analytic explanation of the phenomenon.   

Another way to begin would be to try to construct a Charged Shell initial condition and determine 

what conditions lead to its stability. 

If a stable shell-like solution is not found, we might then wonder if there is something missing 

from the Dirac equation (an additional term, or a nonlinearity of some kind) that would provide 

the additional stabilizing factor at the correct radius.   

  



25 
 

7.1. 1D Super-Narrow 

 

 
Figure 5.  Time evolution of Super-Narrow Initial Gaussian-like Wavepacket  

for the Dirac Equation (1D case).  The Gray Dashed lines indicate ± 𝐶

2
. 

 

This example looks as would be expected: a Super-Narrow initial distribution, effectively 

contained inside the Reduced Compton Wavelength, leads to a rapidly expanding Shock Fronts 

moving in both directions outward from the origin at the speed of light.   
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7.2. 2D Super-Narrow 

 

 

Figure 6.  Time evolution of Super-Narrow Initial Gaussian-like Wavepacket  

for the Dirac Equation (2D case).  The Gray Dashed circle has radius of 𝐶

2
. 

 

This example looks as would be expected: a Super-Narrow initial distribution, effectively 

contained inside the Reduced Compton Wavelength, leads to a rapidly expanding 2D radial 

Shock Fronts moving outward from the origin at the speed of light.   
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How to display a 3D complex variable?  For a 3D Dirac equation simulation, we will need 4 of 

them, one for each wavefunction component.   For each one, we will show three orthogonal 

cross-sections going through the origin, so we can see internal structure.  The four components 

are  

 Positive Energy, Electron, Spin Up ( 𝑒− ↑ )   

 Positive Energy, Electron, Spin Down (  𝑒− ↓  )  

 Negative Energy, Positron, Spin Up ( 𝑒+ ↑ )     

 Negative Energy, Positron, Spin Down ( 𝑒+ ↓ ). 
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7.3.  3D Tight Gaussian  

 

 

 

 

 

It does not show any signs of a stable configuration, it seems to be continually expanding outside 

the Half-Reduced Compton Radius.  It does seem that the thinner the initial Gaussian 

distribution, the thinner are the “layers” of the outward-moving ripples.   

𝑒− ↑                          𝑒− ↓                            𝑒+ ↑                         𝑒+ ↓           
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7.4. 3D Very Tight Gaussian  

 

 

 

 
 

 

 

𝑒− ↑                             𝑒− ↓                             𝑒+ ↑                             𝑒+ ↓           
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7.5.  3D Spherical Shell  

 

 

 
 

 

It still creates an outgoing (and ingoing) wave, regardless of whether or not there is charge.  So, 

we will conclude that the Dirac Equation does not lead to a stable constrained charge distribution.   

 

8. Modifying the Dirac Equation to get a Stable Configuration 

 

It appears that the Dirac equation, on its own, does not produce a stable constrained distribution, 

at least for the few conditions we tried. This is to be expected; the charge spreading is a QED 

effect, which is not an inherent part of the Dirac Equation.  Below are some highly speculative 

notes about how the Dirac Equation might be modified to take the QED charge-spreading effect 

into account. 

𝑒− ↑                                           𝑒− ↓                                            𝑒+ ↑                                         𝑒+ ↓           
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Some additional constraint, or nonlinearity, or term, is needed to be added to the Dirac equation 

to create a stable constrained distribution.   

 

If the Upper Component is the positive energy component (electron), and the Lower Component 

is the negative energy component (positron), could that introduce an additional attractive force 

that has not been taken into account (Dirac equation does not include Charge!)? 

 

Dirac Equation comes from the combination of Quantum Mechanics and the Energy-Momentum 

Relation of Special Relativity.  But this assumes that the electron is not experiencing accelerated 

motion, which is clearly a very poor assumption when the electron is very close to the nucleus of 

the atom.  This also suggests that the Dirac Equation would require some modification to account 

for the acceleration it experiences near the nucleus of the atom.  Could it be that some kind of 

General Relativity term is needed, not to account for acceleration due to gravitational attraction, 

but to account for acceleration due to electromagnetic attraction? 

 

9. Discussion 

 

We have shown that four different sub-Compton charge density proposals can be made 

consistent with the Lamb Shift.  But which one (if any) of them is right?  Recall that each proposal 

was based on a unique physical model, derived from some plausible mechanism, by credible 

relativistic physicists.  We have made a proposal that the correct distribution could be derived 

from knowledge of the higher-order moments (Bethe Logarithm components), with the hard 

work still to be done.  If this work could be completed, we would have a definitive description of 

the sub-Compton charge density of the electron.  The importance of this cannot be overstated.  It 

would give us a deep insight into an underlying physical behavior of the electron at sub-Compton 

scales.  Quantum Electrodynamics can make the statement that the electron “continuously emits 

and absorbs virtual photons, and as a result its electric charge is spread over a finite volume 

instead of being pointlike.” [Eides, Grotch, and Shelyuto, 2007]  But it does not tell us how the 

charge is spread, what shape, what motion, what wavefunction?  With the higher-order moments 

of the Bethe Logarithm, we may be in a position to answer the question definitively, or at least 

significantly constrain the options.   

 

We will speculate briefly on the choices, to illustrate how significant it would be to have a 

definitive answer.   

 

1. If it should turn out that the Charged-Shell Distribution inspired by Hestenes’ Space-Time 

Algebra were supported by the higher-order moments calculation, it would provide 

external validation to Hestenes’ helical motion / Zitterbewegung proposal.  It would give 

deep insight into the connection between the “continuous emission and absorption of 
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virtual photons” and the spin of the electron, by confirming that the electron “at rest” is 

really moving in a circular path in three dimensions. 

2. If it should turn out that the Imaginary Charged-Ring Distribution inspired by Barut and 

Bracken’s Zitterbewegung analysis were supported by the higher-order moments 

calculation, it would provide external validation to Barut and Bracken’s relativistic 

analysis.  It would give deep insights into the connection between the “continuous 

emission and absorption of virtual photons” and the spin of the electron, by confirming 

that the electron “at rest” is really moving in a circular path in two auxiliary dimensions. 

3. If it should turn out that the Exponential Distribution were supported by the higher-order 

moments calculation, it would provide external validation to the idea that the small 

component acts like a “mini-positron”, creating some kind of sub-orbital system from the 

large and small components.  This idea would have further implications for the origin of 

electron spin. 

4. If it should turn out that the Gaussian Distribution were supported by the higher-order 

moments calculation, it could provide external validation to the idea that the underlying 

physics of the electron is dominated by some random process (like Bracken’s Quantum 

Random Walk) or Brownian-like motion, i.e. the electron is randomly jittering, not moving 

in a circular or orbital path.  Or there could be some other underlying physics that could 

lead to a Gaussian Distribution.  From Carver Mead [personal communication]:  “I don't 

believe there is any randomness in the spread of the wave function itself.  And a Gaussian, 

to me, says nothing that would imply randomness.  It is a perfectly good shape for the 

square of the amplitude of a totally coherent standing wave.  In that case it would be 

telling us something about the "effective potential" of the electron-proton pair. This is not 

to say that every Hydrogen atom is in a perfect stationary environment.  Just that, if the 

environment were perfectly isolated, the wave function would still have a spread-out 

shape.”  From Dick Lyon [personal communication]:  “In the Gaussian case it may just be 

apparently random, not actually random, as long as there's a sum of many small 

contributions from other electrons in the universe.”  Both of these comments are consistent 

with the Collective Electrodynamics framework of coherent wavefunctions and nonlocal 

interactions [Mead, 2000]. 

5. If it should turn out that none of the above proposals (or some mixture of the above 

proposals) is supported by the higher-order moments calculation, it would likely lead us 

to make a new proposal that would fit the new constraint. 

 

The underlying physics of each of these proposals is dramatically different from the others.  

Which one (if any) is right?  Quantum Electrodynamics appears to be silent on the question.  We 

believe that answering this question would be very important. 
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10. Conclusions 

 

We use perturbation analysis to show that the Lamb Shift is consistent with electron charge 

spreading inside the half-reduced Compton Wavelength, and we develop a novel numerical 

technique for solving the Dirac Hydrogen problem with a modified Coulomb potential, and use 

it to find the form of the modified Dirac Hydrogen wavefunctions.  We show that the singularity 

at the origin of the Dirac Hydrogen wavefunction is eliminated, with a small amount of charge 

density near the origin displaced radially outward.  The large component is made continuous at 

the origin, and the small component is driven to zero at the origin.  The near-constant behavior 

of the Bethe Logarithm out to its asymptotic limit as principal quantum number 𝑛 → ∞ leads to a 

novel suggestion that this charge spreading for a bound electron in a Hydrogen Atom may also 

occur for a free electron.  We also show novel 3D visualizations of numerical Dirac equation 

simulations.   

  



34 
 

References 

 

1. Barut, A.O., and Bracken, A.J., “Zitterbewegung and the internal geometry of the 

electron”, Phys. Rev. D, Vol. 23, No. 10, (1981), p. 2454-2463. 

2. Bracken, A.J., Ellinas, D., and Smyrnakis, I., “Free Dirac Evolution as a Quantum Random 

Walk”, arXiv:quant-ph/0605195v1, 2006. 

3. Darwin, C. G., “The Wave Equations of the Electron”, Proc. Roy. Soc. A118 (1928), p. 654-

680. 

4. Dirac, P.A.M., “The Quantum Theory of the Electron”, Proc. Roy. Soc. A117 (1928), p. 610-

624. 

5. Eides, M., Grotch, H., and Shelyuto, V., Theory of Light Hydrogenic Bound States, Springer, 

2007. 

6. Ellinas, D., Bracken, A.J., and Smyrnakis, I., “Discrete Randomness in Discrete Time 

Quantum Walk:  Study via Stochastic Averaging”, arXiv:1207.5257v1, 2012. 

7. Feynman, R., “Relativistic Cut-off for Quantum Electrodynamics”, Phys. Rev. 74 (1948), 

p. 1430-1438. 

8. Hammerling, R. et al., “Numerical Solution of Singular ODE Eigenvalue Problems in 

Electronic Structure Computations”, Computer Physics Communications 181:1557-1561, 

2010. 

9. Hestenes, D., “Zitterbewegung in Quantum Mechanics“, Found. Phys. (2010) 40:1. 

10. Itzhykson and Zuber, “Quantum Field Theory”, McGraw-Hill, 1980, p. 79. 

11. Jentschura, U.D., and Mohr, P.J., “Bethe Logarithms for Rydberg States: Numerical Values 

for n ≤ 200”, arXiv:quant-ph/0504002v1 2005. 

12. Lamb, W., and Retherford, R., "Fine Structure of the Hydrogen Atom by a Microwave 

Method". Physical Review 72 (1947): 241–243. 

13. Landau and Lifshitz, “Course of Theoretical Physics”, Vol. 4, 2nd Edition, 1982, p. 137. 

14. Mead, C.A., Collective Electrodynamics: Quantum Foundations of Electromagnetism, MIT 

Press, 2000. 

15. Patil, S.H., “Analytic Phase Shifts for Truncated and Screened Coulomb Potentials”, Phys. 

Rev. A 24 (1981), p. 2913. 

16. Silbar, R. R., and Goldman, T., “Solving the Radial Dirac Equations:  A Numerical 

Odyssey”, arXiv:1001.2514v2, 2010. 

17. Thaller, B., “Advanced Visual Quantum Mechanics”, Springer 2005. 

18. Wannier, G.H., “Energy Eigenvalues for the Coulomb Potential with Cut-Off.  Part I”, 

Phys. Rev. 64 (1943), p. 358-366. 

19. Welton, T.A., “Some Observable Effects of the Quantum-Mechanical Fluctuations of the 

Electromagnetic Field”, Phys. Rev. 74, p. 1157 – 1167. 

  



35 
 

Appendix – Perturbation Analysis for Gaussian Charge Density 
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