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  In this study , we explored an alternate proposal to explain the Lamb Shift, in the hope of providing    

a formulation which would eliminate  the singularity of the Dirac wavefunctions, and avoid the 

renormalization and divergent integrals of the usual Quantum Electrodynamics approach .  Following a 

suggestion by Kalitvianski (2008), the Hydrogen atom is treated as a two-body problem, in which t he 

nucleus (proton) and electron move around a common center of mass.  Since the proton is ~1836 times more 

massive than the electron, the ×ÙÖÛÖÕɯÍÖÙÔÚɯÈɯÚÔÈÓÓɯɁÊÏÈÙÎÌɯÊÓÖÜËɂɯÈÙÖÜÕËɯÛÏÌɯÊÌÕÛÌÙɯÖÍɯÔÈÚÚɯÛÏÈÛɯÐÚɯÈɯ

scaled down version of the electron charge density, scaled down approximately by the proton -to-electron 

mass ratio.  We can compute the modified Coulomb potential corresponding to th is effective nuclear charge 

density, and solve the two-body problem iteratively , in the spirit of the Hartree-Fock Self Consistent Field 

approach.  We find that the singularities of the Coulomb potential and original Dirac wavefunctions are 

indeed eliminated; all potentials and wavefunctions become finite in the first iteration , and small positive 

energy shifts of approxim ately the right order of magnitude (a few GHz) are found for the 1S and 2S states 

of both Hydrogen and Deuterium.  However, the detailed predictions differ significantly from modern 

measurements, and the dependence on the principle quantum number ὲ and the proton-to-electron mass 

ratio ‘ does not match the trends in the data, or in the accepted QED theory, which does agree with 

experiment.  In addition, all known relativistic two -body derivations (Barker and Glover (1955), Eides, 

Grotch and Shelyuto (2007) produce recoil and finite nuclear size effects that are much smaller than the 

Lamb Shift.  We conclude that the proposal is not viable, and that if ther e is an opportunity to find a new 

formulation of Lamb Shift theory that avoids the divergences and renormalization of Quantum 

Electrodynamics, it should focus on mechanisms associated with charge smearing of the electron, not the 

nucleus. 
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Summary of Re sults  

The modified potentials for the 1S and 2S states are  

ὠ ὶ ρ Ὡ ρ  ,  ὶ  

ὠ ὶ ρ Ὡ ρ  , ὶ  

where ‘ is the proton -to-electron mass ratio, and ὥ is the Bohr radius.  These potentials are 

plotted in Figure 1 , with comparisons to the conventional Coulomb potential .   

 
Figure 1:  Modified potentials  for 1S and 2S states, compared to conventional Coulomb 

potential (dashed line). Potentials are scaled relative to ὠ π  .   

 

The first-order energy shifts (expressed as frequencies) can be computed easily using 

perturbation theory:  
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From this, we infer  the leading term in the perturbative expansion for the energy  shift (valid at 

least for small ὲ): 
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Using numerical methods (two -sided shooting), we have computed the energies, in good 

agreement to the above perturbative expressions, and also wavefunctions and corresponding 

charge densities, as shown Figure 2.  In these plots, it can be seen that the cusps and singularities 

of the original solutions are indeed eliminat ed in the modified formulation.  
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Figure 2:  Modified electron charge densities for 1S and 2S states (blue lines), compared to 

conventional electron charge densities (red lines). Solid lines are the relativistic charge 

densities, dotted lines are the non -relativistic charge densities .  All curves are scaled relative 

to the non -relativistic density at the origin.  The cusps and singularities of the original 

solution are eliminated.  
 

So, qualitatively , the model achieves some of its goals:  it produces small positive energy shifts, 

and eliminates the cusps and singularities in the wavefunctions, and involves no singular 

mathematics or renormalization.  

Unfortunately, the quantitative predictions of the model do not agree with experiment, as shown 

in Figure 3, in which we consider the 1S and 2S states, for both Hydroden (H) and Deuterium (D ):  

 

 

 

 

 

 

Measured 

Energy 

Shift (GHz)  

Predicted 

Energy 

Shift (GHz)  

1S½ (H) 8.17287 3.901 

2S½ (H) 1.05785 6.827 

1S½ (D) 8.18381 0.975 

2S½ (D) 1.05936 1.707 

 

Figure 3:  Comparison of prediction and experiment for the 1S and 2S states of both 

Hydrogen and Deuterium.   Data taken from Weitz (1995), Wijngaarden and Drake (1977), 

and Karshenboim  (2005). 

 

In the experimental data, the Hydrogen and Deuterium shifts are extremely close to each other 

(very weak dependence on ‘), whereas the model predicts a strong  dependence.   And in the 

D (experiment) 

H (experiment) 

H (prediction) 

D (prediction) 
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experimental data we see a strong  (decreasing) dependence, whereas the model predicts a 

moderate (increasing) dependence on ὲ.   

The conventional QED theory (Eides, Grotch and Shelyuto, 2007) correctly predicts the 

dependencies seen in the data, as it was designed to do: 

Conventional QED  prediction  

(agrees with experiment) ЎὉ
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Proposed prediction  

(does not agree with experiment) ЎὉ
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Now that we have worked the proposal all the way to its conclusion, we can see why it does not 

succeedȭɯɯ(ÛɯÏà×ÖÛÏÌÚÐáÌÚɯÈɯÓÈÙÎÌɯɁÕÜÊÓÌÈÙɯÊÏÈÙÎÌɯÚÔÌÈÙÐÕÎɂɯÌÍÍÌÊÛɯȹÜÚÜÈÓÓàɯÊÈÓÓÌËɯÛÏÌɯɁÙÌÊÖÐÓɂɯ

term), much larger than is derived from existing two -body relativistic treatments such as Barker 

and Glover (1955) and further modern refinements described in Eides, Grotch, and Shelyuto 

(2007).  This gives the model its unreasonably large dependence on ‘, so it fails the Deuterium 

test.  And since the proposed charge smearing effect depends on the state of the electron, it grows 

with the increasing radius of the electron wavefunction, i.e. the proposed energy shift increases 

with ὲ, when the experimental data clearly shows a strong  (decreasing) dependence.   

For all of the above ÙÌÈÚÖÕÚȮɯÐÛɯÐÚɯÕÖÞɯÊÓÌÈÙɯÛÏÈÛɯÈÕàɯɁÊÏÈÙÎÌɯÚÔÌÈÙÐÕÎɂɯÌÍÍÌÊÛȮɯÖÙɯÔÖËÐÍÐÊÈÛÐÖÕɯÛÖɯ

the effective potential, must come from an effect of smearing of the electron, not the nucleus.  

From Eides, Grotch, and Shelyuto (2007): 

We would like to emphasize that the qu antum mechanical (recoil and finite nuclear size) 

effects alone do not predict anything of the scale of the experimentally observed Lamb 

shift, which is thus essentially a quantum electrodynamic (field -theoretical) effect.  

According to QED an electron continuously emits and absorbs virtual photons and as a 

result its electric charge is spread over a finite volume instead of being pointlike.    

So, going forward, if there is an opportunity to find some reformulation of Lamb Shift theory that 

can avoid the divergences and renormalization of Quantum Electrodynamics, it should focus on  

a mechanism associated with charge spreading of the electron, not the nucleus. 

 

 

 

 

  



5 
 

References 

 

1. !ÈÙÒÌÙȮɯ6ȭ ȭȮɯÈÕËɯ&ÓÖÝÌÙȮɯ%ȭ-ȭȮɯɁ1ÌËÜÊÛÐÖÕɯÖÍɯ1ÌÓÈÛÐÝÐÚÛÐÊɯ3ÞÖ-Particle Wave Equations to 

 ××ÙÖßÐÔÈÛÌɯ%ÖÙÔÚȭɯ(((ɂȮɯ/ÏàÚÐÊÈÓɯ1ÌÝÐÌÞȮɯ5ÖÓÜÔÌɯƝƝȮɯ-ÖȭɯƕȮɯ)ÜÓàɯȹƕƝƙƙȺȮɯ××ȭɯƗƕƛ-324. 

2. Eides, M., Grotch, H., and Shelyuto, V., Theory of Light Hydrogenic Bound States, Springer, 2007. 

3. *ÈÓÐÛÝÐÈÕÚÒÐȮɯ5ȭȮɯɁ ÛÖÔɯÈÚɯÈɯ#ÙÌÚÚÌËɯ-ÜÊÓÌÜÚɂȮɯhttp://arxiv.org/abs/0806.2635, 2008. 

4. *ÈÙÚÏÌÕÉÖÐÔȮɯ2ȭ&ȭȮɯɁ/ÙÌÊÐÚÐÖÕɯ×ÏàÚÐÊÚɯÖÍɯÚÐÔ×ÓÌɯÈÛÖÔÚȯɯɯ0$#ɯÛÌÚÛÚȮɯÕÜÊÓÌÈÙɯÚÛÙÜÊÛÜÙÌȮɯÈÕËɯ

ÍÜÕËÈÔÌÕÛÈÓɯÊÖÕÚÛÈÕÛÚɂȮɯPhysics Reports 422 (2005), pp. 1-63. 

5. 6ÌÐÛáȮɯ,ȭȮɯÌÛɯÈÓȭȮɯɁ/ÙÌÊÐÚÐÖÕɯÔeasurement of the 1S ground-state Lamb shift in atomic 

ÏàËÙÖÎÌÕɯÈÕËɯËÌÜÛÌÙÐÜÔɯÉàɯÍÙÌØÜÌÕÊàɯÊÖÔ×ÈÙÐÚÖÕɂȮɯ/ÏàÚÐÊÈÓɯ1ÌÝÐÌÞɯ Ȯɯ5ÖÓÜÔÌɯƙƖȮɯ-ÖȭɯƘȮ 

1995, pp. 2664-2681. 

6. Wijngaarden, A.V. and Drake, G., Ɂ#ÌÜÛÌÙÐÜÔɯ+ÈÔÉɯÚÏÐÍÛɯÝÐÈɯØÜÌÕÊÏÐÕÎ-radiation anisotropy 

measÜÙÌÔÌÕÛÚɂȮɯ/ÏàÚÐÊÈÓɯ1ÌÝÐÌÞɯ Ȯɯ5ÖÓÜÔÌɯƕƛȮɯ-ÖȭɯƘȮ 1977, pp. 1366-1374. 

 

 

 

 

 

 

 

 

 

 

 

 

2ÖȱɯÉÈÚÌËɯÖÕɯÛÏÌɯÈÉÖÝÌɯÈÕÈÓàÚÐÚȮɯ(ɯÊÖÕÊÓÜËÌËɯÛÏÈÛɯÛÏÌɯÛÞÖ-body approach to Lamb Shift was 

wrong.  But along the way, I developed some interesting mathematical techniques that some 

people may find interesting.  So, the remaining paper contains the full flawed write -up, written 

before I had understood that the approach and conclusion was flawed. 
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  The Dirac Equation (1928) predicted the energy levels of atomic Hydrogen to the level of fine 

structure splitting, but the wavefunctions were singular at the origin and the 2S½ and 2P½ energy levels 

were predicted to be degenerate.  In 1947, Lamb and Retherford measured a small energy difference 

between the 2S½ and 2P½ levels, known as the Lamb Shift.  Hans Bethe in 1947 proposed an explanation 

for this shift based on electron self-energy, in which the electron is continually emitting and absorbing 

virtual photons, such that the charge of the electron is spread over a small volume.  This method results in 

ËÐÝÌÙÎÌÕÛɯ ÐÕÛÌÙÔÌËÐÈÛÌɯ ÊÈÓÊÜÓÈÛÐÖÕÚɯ ȹÐÕÍÐÕÐÛÐÌÚȺɯ ÞÏÐÊÏɯ ÔÜÚÛɯ ÉÌɯ ɁÙÌÕÖÙÔÈÓÐáÌËɂɯ Éàɯ ÚÜÉÛÙÈÊÛÐÕÎɯ

corresponding infinite quantities for a free electron, and re -scaling the mass.  Richard Feynman and others 

in 1948-ƙƔɯÌßÛÌÕËÌËɯ!ÌÛÏÌɀÚɯÔÌÛÏÖËɯÛÖɯÈÊÊÖÜÕÛɯÍÖÙɯÙÌÓÈÛÐÝÐÚÛÐÊɯÌÍÍÌÊÛÚȰɯÛÏÌɯÌÕÛÐÙÌɯ×ÙÖÊÌÚÚɯÐÚɯÒÕÖÞÕɯÈÚɯ

Quantum Electrodynamics (QED).  Neither Dirac nor Feynman were satisfied that renormalization was a 

mathematically legitimate process, but no other explanation for the Lamb Shift has been found to be 

successful, and renormalization has been largely accepted as a valid and necessary part of the theory, 

largely based on the Renormalization Group work of Ken Wilso ÕɯÐÕɯÛÏÌɯƕƝƛƔɀÚȭɯɯ 

In this paper, we develop an alternate proposal to explain the Lamb Shift, which eliminates the 

singularity of the Dirac wavefunctions, and does not involve any renormalization or divergent integrals at 

any point in the calculations.  Following a suggestion by Kalitvianski (2008), the Hydrogen atom is treated 

as a two-body problem, in which the nucleus (proton) and electron move around a common center of mass.  

Since the proton is 1836.15 times more massive than the electron, the proton fÖÙÔÚɯÈɯÚÔÈÓÓɯɁÊÏÈÙÎÌɯÊÓÖÜËɂɯ

around the center of mass that is a scaled down version of the electron charge density, scaled down 

approximately by the proton -to-electron mass ratio.  We can compute the modified Coulomb potential 

corresponding to this effecti ve nuclear charge density, and solve the two-body problem iteratively.  We 

find that the singularities of the Coulomb potential and original Dirac wavefunctions are eliminated; all 

potentials and wavefunctions become finite in the first iteration.  We have  calculated the Lamb Shift and 

1S-2S transition energies, and we find the correct sign and magnitude of shifts, provided that the scaling of 

the effective nuclear charge density is permitted to have a moderate dependence on the quantum state of 

the atom.  This is consistent with the relativistic two -body theory of Todorov (1971) in which a two -body 

relativistic system can be reduced to an equivalent one-body relativistic system with an energy -dependent 

quasi-potential.  

 Modern QED calculations (Mohr/CODATA 2010) are extremely sophisticated, and certainly take 

relativistic two -body considerations into account, based on Barker and Glover (1955) and Sapirstein and 

Yennie (1990).  Based on the assumption of two interacting Dirac particles, they find that two-body effects 

are too small to account for Lamb Shift, and therefore the QED/self-energy effects are needed to explain the 

Lamb Shift.  However, their analysis is based on two interacting Dirac particles, which does not strictly 

describe the Hydrogen electron/proton system ɬ a proton is not the same as a massive positron.  In 2014, it 

appears that a relativistic two -body theory that is strictly applicable to Hydrogen does not yet exist, 

although progress is being made (Jallouli and Szadjian 1996; Buonanno 2000; Crater 2014).  Our work is 

built on the hypothesis that such a theory, when it is developed, will rigorously produce state -dependent 

quasi-potentials of the form that we have derived from our assumed informal two -body interaction.  
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1. Introduction  

In 1928, Paul Dirac formulated his equation for the wavefunction of the electron, derived from 

first principles from the Energy -Momentum Relation of Special Relativity.  Using his equation, 

he found closed-form solutions for the energy values and wavefunctions of the stationary states 

of the Hydrogen atom, under the assumption of a central Coulomb potential, which effectively 

assumes a non-moving, point charge in the nucleus of the atom.  This formulation had many 

dramatic successes: 
 

¶ the prediction of the transition energies matched the spectroscopic data to the 

experimental accuracy available in 1928ȮɯÕÖÛÈÉÓàɯ×ÙÌËÐÊÛÐÕÎɯÛÏÌɯƘƙȭƖƜϟÌ5ɯÍÐÕÌɯÚ×ÓÐÛÛÐÕÎɯÖÍɯ

the n=2 energy level into the ςὖ and ςὖ energy levels, about 1/200,000 the size of the 

10.2eV Lyman-ϔɯÛÙÈÕÚÐÛÐÖÕɯÌÕÌÙÎà;  

¶ the bi-spinor solution provided a firm  theoretical foundation for electron s pin which, up 

to that time, had been explained only empirically by Wolfgang Pauli in 1927, matching 

the 1925 experimental data of Uhlenbeck and Goudsmit;   

¶ and his solution predicted the existence of anti-particles, notably the positron, which was 

subsequently discovered by Carl Anderson in 1932 . 
 

        However, in 1928, Charles G. Darwin observed that the radial solutions to the Dirac 

formulation of the Hydrogen atom were singular at the origin , including even the ground state 

ρὛ.  But since the integrals associated with computing the spectral energies were convergent, and 

the spectral energies were a good match for the available data, and there were so many other 

successes, this problem was considered minor at the time.  Darwin wrote,  
 

We do not know  enough perhaps about the essential rules for proper functions to pay much 

attention to this defect.  Moreover, it may well be that it would disappear if we could solve the 

problem of two bodies properly instead of treating the nucleus as an abstract center of force. 

 

        One of the predictions from the Dirac formulation of the Hydrogen atom was that the ςὛ 

and ςὖ  states should be degenerate, i.e., they should have the same energy levels, since they 

both have n=2 and j=½ȮɯÈÕËɯÐÕɯ#ÐÙÈÊɀÚɯÍÖÙÔÜÓÈÛÐon, the energy levels depend only on n and j.   In 

1947, Willis Lamb and Robert Retherford made precision measurements of the energy separation 

between the ςὛ and ςὖ levels, and found it to be about 4.375ϟÌ5 (reported at the time as about 

1000 MHz), about 1/10 the size of the fine splitting, or about 1/2,000,000 the size of the Lyman-ϔɯ

transition energy, which is indeed very small, but not zero as predicted by the Dirac formulation.   

        So, by 1947, there was clear experimental  evidence that, despite its many successes, the Dirac 

formulation of the Hydrogen atom was incomplete or incorrect in some way ɬ something new 

was needed to account for the tiny Lamb shift.  And it was well -known since 1928 that the radial 

basis functions were singular at the origin, giving a clear theoretical indication that there was 

some defect in the formulation, with speculation that this defect may be related to the assumption 

of a non-moving, point charge in the nucleus of th e Hydrogen atom, i.e., not dealing properly 

with the true, two -body nature of the problem, as pointed out by Darwin in 1928.  
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        In 1947, Hans Bethe proposed a theory for the Lamb Shift, based on a suggestion by Julian 

Schwinger, Victor Weisskopf , and Robert Oppenheimer, that the energy shift could be caused by 

ÛÏÌɯÌÓÌÊÛÙÖÕɯÐÕÛÌÙÈÊÛÐÕÎɯÞÐÛÏɯÐÛÚɯÖÞÕɯÙÈËÐÈÛÐÖÕɯÍÐÌÓËɯȹÛÏÌɯɁÚÌÓÍ-ÌÕÌÙÎàɂɯÖÍɯÛÏÌɯÌÓÌÊÛÙÖÕȺȭɯɯ!ÌÛÏÌɯ

wrote,  
 

This shift comes out infinite in all existing theories, and has therefore always b een ignored.  

However, it is possible to identify the most strongly (linearly) divergent term in the level shift 

with an electromagnetic mass effect which must exist for a bound as well as for a free electron. 

This effect should properly be regarded as already included in the observed mass of the 

electron, and we must therefore subtract from the theoretical expression, the corresponding 

expression for a free electron of the same average kinetic energy.   
 

        !ÌÛÏÌɀÚɯ×ÙÖ×ÖÚÌËɯÚÖÓÜÛÐÖÕɯÞÈÚɯÛÖɯÚÛÈÙÛɯÞÐÛÏɯ#ÐÙÈÊɀÚɯ'àËÙÖÎÌÕɯÌÕÌÙÎàɯÓÌÝÌÓÚɯÈÚɯÈɯÉÈÚÌÓÐÕÌȮɯ

and then, to get the (tiny) Lamb shift, he added an (infinite) self -energy correction term for the 

bound-state electron, and subtracted another (infinite) self-energy term for a corresponding free 

electron.  In ÛÏÌɯ×ÙÖÊÌÚÚȮɯÐÛɯÞÈÚɯËÐÚÊÖÝÌÙÌËɯÛÏÈÛɯÛÏÌɯÔÈÚÚɯÖÍɯÛÏÌɯÌÓÌÊÛÙÖÕɯÔÜÚÛɯÉÌɯÈËÑÜÚÛÌËɯȹɁÉÈÙÌɂɯ

ÝÚȭɯɁËÙÌÚÚÌËɂɯÔÈÚÚȺɯÛÖɯÎÌÛɯÛÏÌɯÈÕÚÞÌÙɯÛÖɯÊÖÔÌɯÖÜÛɯÙÐÎÏÛȭɯɯ!ÌÛÏÌɀÚɯÖÙÐÎÐÕÈÓɯ×ÙÖ×ÖÚÈÓɯÔÈËÌɯÚÌÝÌÙÈÓɯ

non-relativistic assumptions; Richard Feynman extended the process to include relativistic 

ÌÍÍÌÊÛÚȭɯɯ3ÏÌɯÌÕÛÐÙÌɯ×ÙÖÊÌÚÚɯÐÚɯÊÈÓÓÌËɯɁÙÌÕÖÙÔÈÓÐáÈÛÐÖÕɂȮɯÈÕËɯÐÛɯÉÌÊÈÔÌɯÛÏÌɯÉÈÚÐÚɯÍÖÙɯÔÖËÌÙÕɯ

Quantum Field Theory (QFT) and Quantum Electrodynamics (QED) ɬ ÈÓÓɯÉÈÚÌËɯÖÕɯ!ÌÛÏÌɀÚɯ

proposed self-energy solution to the Lamb Shift.  Note that this proposed solution does not 

attempt to eliminate the original infinities in the Dirac formulation of the Hydrogen atom ɬ it 

accepts the defective formulation with its two infinities (a radial wavefunction that is infinite at 

the origin, based on the Coulomb potential that is infinite at the origin), computes the baseline 

energy level, adds an infinite self-energy, subtracts another infinite self-energy, and re-scales the 

result to match the experimental measurement -- a total of four infinities altogeth er.  

        3ÏÙÖÜÎÏɯÛÏÌɯƕƝƛƔɀÚɯÛÖɯÛÏÌɯ×ÙÌÚÌÕÛɯËÈàȮɯÌß×ÌÙÐÔÌÕÛÈÓɯ×ÏàÚÐÊÐÚÛÚɯÏÈÝÌɯÔÌÈÚÜÙÌËɯÛÏÌɯ+ÈÔÉɯ2ÏÐÍÛɯ

to extremely high precision (1057.85 MHz, as reported by Karshenboim in 2005, summarizing 

and combining many different measurement techniques).   The ςὛ - ρὛ  transition energy in 

atomic Hydrogen was measured in 2011 by Parthey et al., obtaining a fractional frequency 

uncertainty of 4.2 x 10-15.  The detailed QED calculations of Peter Mohr in 1974 were capable of 

predicting the Lamb Shift value of 1057.867(13) MHz for Hydrogen, and 1059.241(27) MHz for 

Deuterium, and Karshenboim 2005 gives a detailed summary of further modern refinements.  A 

very modern summary of both the theory and measurement is given by Peter Mohr in the 

CODATA 2010 Update Report.   

        (ÕɯÏÐÚɯƕƝƚƙɯ-ÖÉÌÓɯ/ÙÐáÌɯÓÌÊÛÜÙÌȮɯ%ÌàÕÔÈÕɯÚÈÐËȮɯɁ(ɯÛÏÐÕÒɯÛÏÈÛɯÙÌÕÖÙÔÈÓÐáÈÛÐÖÕɯÛÏÌÖÙàɯÐÚɯÚÐÔ×Óàɯ

ÈɯÞÈàɯÛÖɯÚÞÌÌ×ɯÛÏÌɯËÐÍÍÐÊÜÓÛÐÌÚɯÖÍɯÛÏÌɯËÐÝÌÙÎÌÕÊÌÚɯÖÍɯÌÓÌÊÛÙÖËàÕÈÔÐÊÚɯÜÕËÌÙɯÛÏÌɯÙÜÎȭɂɯɯ(ÕɯƕƝƛƙȮɯ

Dirac said,  
 

I must say that I am very dissatisfied with the situation, because this so-called 'good theory' 

does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary 

way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quantity 

when it is small ɬ not neglecting it just because it is infinitely great and you do not want it ! 
 



10 
 

        This dissatisfaction with the theoretical foundations of Quantum Electrodynamics led 

several workers, notably Ed Jaynes and Asim Barut, to seek alternate formulations that could 

match the good experimental measurements, but with a firmer theoretical foundation, and 

without requiring the questionable renormalization procedure.  Asim Barut developed a theory 

ÊÈÓÓÌËɯɁÚÌÓÍ-field quantuÔɯÌÓÌÊÛÙÖËàÕÈÔÐÊÚɂɯÉÈÚÌËɯÖÕɯÌßÛÌÕËÐÕÎɯÛÏÌɯ#ÐÙÈÊɯÍÖÙÔÜÓÈÛÐÖÕɯÞÐÛÏɯÛÏÌɯ

Abraham-Dirac-Lorentz (ADL) radiation loss term, and, with Joseph Kraus in a series of papers 

from 1983 to 1992, specifically addressed the Lamb Shift.  While the Dirac formulation of the 

Hydrogen atom is a linear differential equation, the Barut self -field formulation is a nonlinear 

integro-differential equation because of the added nonlinear radiation loss term.   They were able 

to solve this difficult equation in 1992 and show that, in the first iteration, it agrees with the usual 

QED result, but it did not eliminate the need for renormalization, so it appears to have had limited 

influence.    

        In 2000, Carver Mead published Collective Electrodynamics, in which he summarized the 

history of Quantum Electrodynamics and strongly emphasized the foundational problems 

associated with point -charge assumptions, and the need for self-consistent, continuous-charge-

density formulations of the problem and its solutions, which would therefore n ecessarily be 

nonlinear:   
 

The electron wave function depends on the potential; the potential depends on the charge 

density that is determined by the wave function.  Thus, we have an inherently nonlinear 

problem.  
 

        In 2008, Vladimir Kalitvianski int ÙÖËÜÊÌËɯÛÏÌɯÊÖÕÊÌ×ÛɯÖÍɯɁØÜÈÕÛÜÔɯÔÌÊÏÈÕÐÊÈÓɯÊÏÈÙÎÌɯ

ÚÔÌÈÙÐÕÎɂȮɯÉÈÚÌËɯÖÕɯÈÕɯÈÚÚÜÔÌËɯÛÞÖ-body interaction between the electron and the nucleus: 
 

$ÝÌÙàÉÖËàɯÒÕÖÞÚɯÛÏÈÛɯÛÏÌɯÈÛÖÔÐÊɯÌÓÌÊÛÙÖÕÚɯÍÖÙÔɯÈɯɁÕÌÎÈÛÐÝÌɯÊÏÈÙÎÌɯÊÓÖÜËɂɯÞÐÛÏÐÕɯÈÕɯÈÛÖÔȭɯ

Few, however, know that a ÚÐÔÐÓÈÙɯɁÊÓÖÜËɂɯÐÚɯÍÖÙÔÌËɯÉàɯÛÏÌɯÈÛÖÔÐÊɯÕÜÊÓÌÜÚɯÈÙÖÜÕËɯÛÏÌɯÈÛÖÔÐÊɯ

ÊÌÕÛÌÙɯÖÍɯÐÕÌÙÛÐÈȭɯ3ÏÌɯɁ×ÖÚÐÛÐÝÌɯÊÏÈÙÎÌɯÊÓÖÜËɂɯÐÚɯÑÜÚÛɯÚÔÈÓÓÌÙɯÐÕɯÚÐáÌɯɬ it is rescaled to the 

distances  r  Ò a0 (me / MA ), but it is of exactly the same nature. 

 

Kalitvianski  showed that the smearing of the nuclear charge due to the motion of the nucleus 

leads, in the first iteration in the non -relativistic case, to a modified Coulomb potential that is 

indeed no longer singular at the origin, an essential first step and a prom ising sign that his 

approach is on the right track.   But much work was left still to be done.  

        (ÛɯÚÏÖÜÓËɯÉÌɯÕÖÛÌËɯÛÏÈÛɯÛÏÌɯÐËÌÈɯÖÍɯɁÔÖÛÐÖÕɯÖÍɯÛÏÌɯÕÜÊÓÌÜÚɂɯÖÙɯɁÛÞÖ-ÉÖËàɯÌÍÍÌÊÛÚɂɯÐÚɯÕÖÛɯÕÌÞȭɯɯ

Niels Bohr had to take the finite mass of the nucleus into account in his 1913 model of the atom 

ÐÕɯÖÙËÌÙɯÛÖɯÔÈÛÊÏɯÛÏÌɯÈÝÈÐÓÈÉÓÌɯÚ×ÌÊÛÙÈÓɯËÈÛÈȮɯÙÌÚÜÓÛÐÕÎɯÐÕɯÈɯɁÙÌËÜÊÌËɯÔÈÚÚɂɯÊÖÙÙÌÊÛÐÖÕɯÍÖÙɯÛÏÌɯ

mass of the electron, which accounts for the common motion of the electron and the nucleus 

around common center of mass.  This correction is commonly used in other modern treatments 

ȹÕÖÛÈÉÓàȮɯÛÏÌɯƕƝƙƛɯÉÖÖÒɯÉàɯ!ÌÛÏÌɯÈÕËɯ2ÈÓ×ÌÛÌÙɯÏÈÚɯÈɯÚÌÊÛÐÖÕɯÌÕÛÐÛÓÌËɯɁ,ÖÛÐÖÕɯÖÍɯÛÏÌɯ-ÜÊÓÌÜÚɂɯÐÕɯ

which they describe the well -known reduced mass correction).  But this is really just a clever trick 

that converts a true two-body problem back into a much simpler but not -exactly-equivalent one-

body problem with a reduced electron mass and a non-moving nucleus, which does not eliminate 
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the singularity problems of the point -charge nucleus, and does not account for other properties 

of the nucleus than its large mass (such as its non-zero radius, its spin, and its intrinsic magnetic 

moment).   

#ÈÙÞÐÕɀÚɯÛÞÖ-body speculation (1928) foreshadowed early attempts at relativistic two -body 

analysis by Gaunt, Eddington in 1928, and Breit in 1929.  But strictly speaking, these analysis 

applied to the situation of two electrons interacting through electromagnetic fields, not an 

electron and a proton as in a Hydrogen atom.   

Bethe and Salpeter in the 1951 developed a general, fully covariant, quantum -field -theoretic 

approach to the relativistic two -body problem, known as the Bethe-Salpeter Equation, however 

this 16-component, 4-dimensional integral equation with two time dimensions has proven 

extremely difficult to anal yze and interpret (Grandy, 1991). 

From here, the literature of relativistic two -body analysis appears to split into three major 

threads, which appear to have advanced rather independently of each other. 

1. First Thread, (Barker/Glover 1955, Sapirstein/Yennie 1990, Mohr/CODATA 2010) :  

Barker and Glover in 1955 developed a reduction from the full 16 -component two -body 

problem to a reduced 4-component equivalent one-body problem using the Foldy -

Wouthuysen transformation, with application to the Hydrogen atom.  Th is method 

accounted for the mass of the proton and the intrinsic magnetic moment of the proton.  

The result of this is a highly refined relativistic reduced -mass correction, as described in 

Mohr/CODATA 2010, and other very small corrections that are much s maller than the 

Lamb Shift.  The Lamb Shift is treated as a radiative correction, i.e., a consequence of self-

energy and vacuum polarization in quantum field theory.  The physical origin as stated 

Éàɯ$ÐËÌÚɯƖƔƔƛȯɯɯɁ ÊÊÖÙËÐÕÎɯÛÖɯ0$#ɯÈÕɯÌÓÌÊÛÙÖÕɯÊÖÕÛÐÕÜÖÜÚÓàɯemits and absorbs virtual 

photons and as a result its electric charge is spread over a finite volume instead of being 

×ÖÐÕÛÓÐÒÌȭɂɯɯ3ÖɯÉÌɯÊÓÌÈÙȮɯÐÕɯÛÏÐÚɯÝÐÌÞɯÖÍɯÛÏÌɯ×ÙÖÉÓÌÔȮɯÛÞÖ-body effects do not contribute 

significantly to the Lamb Shift;  The Lamb Shift  is a result of the electron interacting with 

itself (self-energy) and the vacuum (vacuum polarization) via virtual photons.  In this 

view of the Hydrogen Spectrum problem, it is widely accepted that renormalization is a 

valid process (as legitimized by KeÕɯ6ÐÓÚÖÕɀÚɯ1ÌÕÖÙÔÈÓÐáÈÛÐÖÕɯ&ÙÖÜ×ɯÞÖÙÒȺȮɯÈÕËɯÛÏÌɯ

theory of the Hydrogen spectrum is on very solid ground;  known relativistic two -body 

effects such as nuclear recoil and radiative-recoil corrections are far too small to account 

for the bulk of the Lamb Shif t.  So, in this community, Two -Body Hydrogen appears to be 

regarded as a solved problem.  Possible weaknesses in this position are:  (a) Thaller 1992 

has pointed out that the Foldy Wouthuysen transformation, on which Barker and Glover 

is based, is not strictly rigorous, (b) Grandy 1991 has pointed out that Barker and Glover 

had to treat Hydrogen as a bound system of two Dirac particles, which is not strictly 

correct (this is equivalent to treating a proton as a very massive positron), (c) Grandy 1991 

has pointed out that Barker and Glover underestimate the size of the effect of the Dirac 

moments, and (d) the general concerns about the validity of renormalization, which is not 

accepted by everyone (including Dirac and Feynman). 
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2. Second Thread, (Todorov 1971, Jallouli/Szadjian 1996, Crater/VanAlstine 1981 -2014):  In 

1971, I.T.Todorov developed his theory of relativistic two -body interactions which 

involved an equivalent relativistic reduced mass correction and the derivation of an 

energy-dependent complex quasi-potential in the equivalent one -body problem.   Crater 

and Van Alstine 1982-ƕƝƜƚɯËÌÝÌÓÖ×ÌËɯÈɯɁ3ÞÖ-!ÖËàɯ#ÐÙÈÊɯ$ØÜÈÛÐÖÕɂɯÔÌÛÏÖËɯÈÕËɯÈ××ÓÐÌËɯ

it successfully to positronium, muonium, and other two -body fermion/anti -fermion 

systems.  However, it is well -known t hat Hydrogen is definitely not a fermion/anti -

fermion system (proton  massive positron), and so in this community, Hydrogen is 

approached with great caution.  Jallouli and Szadjian in 1996 described an approach to 

Hydrogen that could extend the Two -Body Dirac Equation method to account for the 

anomalous magnetic moment of the proton, however their equations were not in Breit 

form, and did not account for the non -zero radius of the proton.  Crater has been 

developing an extension of this work that would rig orously address these and other 

deficiencies, but as of 2014, this work is still in progress.  Buonanno 2000 has pointed out 

the great difficulties in rigorously formulating an equivalent one -body problem with 

quasi-potential, suggesting that it may not be  possible in flat space-time, and curved 

space-time may be necessary to find the proper correspondence.  So, in this community, 

Two-Body Hydrogen is regarded as a very difficult, unsolved problem.  

3. Third Thread, (Barut/Komy /Unal  1985-88, Grandy 1991):  Barut and Komey 1985, and 

Barut and Unal 1986-88 have described a 16-component relativistic single -time two -body 

wave equation, which has many desirable qualities ɬ relativistic, fully covariant, 

separable, accounts for spin and recoil of both particles, etc.  However, it is not used (or 

even referred to) in the Mohr/CODATA work, nor mentioned in any of the papers by 

Szadjian or Crater.  Only the book by Grandy 1991 refers to this body of work.  It does not 

remove the need for renormalization (so does not address the greatest weakness of Thread 

1) and is presumably much more complicated than Barker and Glover and not necessarily 

more accurate.  So, perhaps it has not been adopted because it is more complicated for no 

additional improvement in accuracy.   

 

With t he above discussion in mind, we can now articulate the agenda of the present work.  We 

will quantitatively develop the hypothesis that:  

 

1. The Lamb Shift is not  a result of the self-energy of the electron, nor an interaction with the 

vacuum, as proposed by Bethe in 1947, and further developed over the following 67 years 

in Quantum Field Theory.  We hypothesize that the Lamb Shift is the result of a relativistic 

two -body interaction between the electron and the nucleus (proton) which in 2014 has not 

yet been determined by relativistic two -body theory.  With this approach, no 

ÙÌÕÖÙÔÈÓÐáÈÛÐÖÕɯÞÐÓÓɯÉÌɯÜÚÌËȮɯÈÕËɯÕÖɯËÐÝÌÙÎÌÕÛɯÐÕÛÌÎÙÈÓÚɯÞÐÓÓɯÉÌɯɁÚÞÌ×ÛɯÜÕËÌÙɯÛÏÌɯÙÜÎɂɯ

(Feynman, 1965).  But we are effectively speculating that there is a currently-unknown 
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relativistic tw o-body effect in the electron-proton system that is large enough to create the 

Lamb Shift.   

2. Following the suggestion by Kalitvianski 2008, we will explore the hypothesis that, in the 

equivalent one-body formulation, the reduced -mass electron moves in a quasi-potential 

that would result from a nuclear charge density that is a scaled-down replica of the 

electron charge density, where the scale factor is closely related to (but not necessarily 

exactly equal to) the proton-to-electron mass ratio.  In the terms of the QFT literature, we 

are effectively hypothesizing that the two -body relativistic nuclear recoil effect, if done 

with a proper model of the proton (not an unusually massive positron), would be large 

enough to explain the Lamb Shift. 

3. We will use an it erative approach.  That is, we will begin with the usual equivalent one -

body solution for the electron wavefunction, assuming a Coulomb potential from a point 

nucleus, then derive the corresponding scaled-down nuclear charge density, derive a new 

modified potential (quasi -potential), and then derive a second-iteration electron wave 

function and corresponding shifted energy.  While it would be possible to perform further 

iterations, we will stop there.  

4. We fully expect that there should be no singularities, cusps, or discontinuities in the 

second-iteration wavefunctions, no divergent quantities in the intermediate calculations, 

and no arbitrary cutoffs necessary to make integrals converge.  Instead of introducing new 

infinities, we will eliminate the original infinities (the singular Coulomb potential and the 

Dirac wavefunctions at the origin).  

5. We will not do the mathematics in momentum -space, introducing arbitrary cutoffs in the 

integrals.  We will operate on wavefunctions directly and compute energy values fr om 

those wavefunctions directly.  

 

At this stage, we are only trying to demonstrate feasibility of a new approach, not yet compare a 

fully -developed theory to experiment at maximum available precision.  Still needed is a first -

principles relativistic deriva tion of the quasi-potential  for the two -body electron-proton system 

that corresponds to the scaled-down nuclear charge density.   Given the comments from modern 

relativity specialists (Barut, Unal, Grandy, Jallouli, Szadjian, Crater, Buonnano ), this is an 

extraordinarily difficult task that may take many more years.  The goal of the present work is to 

demonstrate that a reasonable form of such a quasi-potential can feasibly lead to the correct sign 

and magnitude of energy shifts large enough t o explain the Lamb Shift and 1S-2S transition of 

Hydrogen, thus showing that a search for the corresponding relativistic mechanism would be 

worthwhile, and giving some guidance as to what form it might take.  
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2. The Two -Body Hydrogen Problem  ɬ Non -Relativistic Case  

2.1. Background  

The usual non-relativistic time -independent Schrödinger equation for the Hydrogen atom is  

ᴐ

ςά
ᶯὶȟ—ȟ‰ Ὁ ὠὶ ὶȟ—ȟ‰ π  ȟ 

where  ὶȟ—ȟ‰  is the single-component wavefunction in spherical coordinates,  E is the energy, 

m is the mass of the electron, and V(r) is the central potential due to the positively charged 

nucleus.   The usual assumption is that the nucleus is a non-moving point charge, which implies 

an infinitely heavy nucleus with infinitely high charge density in zero volume, leading to the 

central Coulomb potential  

ὠὶ  
ή

τ“‐ὶ

ᴐ

άὥὶ
 ȟ 

which is obviously singular at the origin.  After separation of variables ὶȟ—ȟ‰

Ὑὶɡ—ɮ‰ , the radial part of the equation is  

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ςά

ᴐ
Ὁ ὠὶ ὰὰ ρ Ὑὶ π 

where l is the orbital quantum number.   The well -known energy and radial solutions are  

Ὁ
άήτ

ψὬς‐π
ςὲς

ᴐς

ςάὥπ
ςὲς
              ÁÎÄ                Ὑὲȟὰὶ ὶὰὒὲȟὰὶὩ

ὶ

ὲὥπ 

where ὒȟὶ is the associated Laguerre function , and ὥ is the Bohr radius 

ὥ
τ“‐ᴐ

άή
 

and the usual normalization conditions are  

Ὑȟ ὶ
 Ὠὶ ρ       ÁÎÄ        ȟ ὶ

 ÓÉÎ—Ὠ‰ Ὠ— Ὠὶ ρ 

In the particular case of the ground state where ὲ ρ and ὰ π, the radial equation reduces to 

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ

ὥ

ς

ὶὥ
Ὑὶ π   Ȣ 

In the present work, it will be convenient to have the normalized radial and full wavefunction 

solutions for the 1S, 2S, and 2P states (from Beiser, 1969): 
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State Normalized Radial  Solution  Normalized Wavefunction Solution  

1S  Ὑ ὶ
ς

ὥ ϳ
Ὡ   ὶ

ρ

Ѝ“ὥ ϳ
Ὡ  

2S Ὑ ὶ
ρ

ςЍςὥ ϳ
ς

ὶ

ὥ
Ὡ   ὶ

ρ

τЍς“ὥ ϳ
ς

ὶ

ὥ
Ὡ  

2P Ὑ ὶ
ρ

ςЍφὥ ϳ

ὶ

ὥ
Ὡ   ὶ

ρ

τЍς“ὥ ϳ

ὶÃÏÓ—

ὥ
Ὡ  

 

 

2.2. Modified  Potentials  

Note that the above solutions are not singular at the origin (unlike the relativistic case), although 

their derivatives are not continuous at the origin.  The above solutions arise from the Coulomb 

potential, which is singular at the origin, co ming from the assumption of an unmoving point 

charge nucleus with infinite charge density at the origin.  Rather than accepting these solutions 

as a final result, we will treat each one as a first iteration.  Now that we have a first electron 

wavefunction corresponding to the point charge nucleus, we can derive an improved, non -

singular, nuclear charge distribution, based on a scaled-down and properly normalized version 

of the electron charge distribution from the first iteration solution above.   

2.2.1. 1S state 

For example, for the 1S ground state, the normalized next-ÐÛÌÙÈÛÐÖÕɯÕÜÊÓÌÈÙɯÊÏÈÙÎÌɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯ

ÈÔ×ÓÐÛÜËÌɂɯÞÐÓÓɯÉÌ 

ὔ ὶ ‘ϳ ‘ὶ
‘ϳ

Ѝ“ὥ ϳ
Ὡ  

where the proton -to-electron mass ratio ‘ ρψσφȢρυ Ȣ  Our key assumption is that the 

nuclear charge density ” ὶ ÐÚɯÛÏÌɯÚØÜÈÙÌɯÖÍɯÛÏÌɯÚÊÈÓÌËɯÕÜÊÓÌÈÙɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯÈÔ×ÓÐÛÜËÌɂɯÛÐÔÌÚɯ

the unit charge ή, so  

” ὶ ήὔ ὶ ή‘ȿ ‘ὶȿ
ή‘

“ὥ
Ὡ  Ȣ 

        The first step will be to deter mine the new potential corresponding to this new, smeared -out 

nuclear charge distribution.  We will address the particular case of the ground state first, before 

addressing the general case.    

        Recall that the potential energy V(r) at distance r from the nucleus is defined as the integral 

of the force required to move a test charge from infinity to r: 

ὠὶ Ὂᾀ Ὠᾀ Ȣ 

For a point charge nucleus, we have Ὂὶ  , so it is trivial to show that this leads to the 

Coulomb potential.  For a general spherical charge distribution ”ὶ, the calculation is more 
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involved.  Without loss of generality, we can place the test charge on the z axis at position  ὃ

ὶὃȟπȟπ.  The first step is to find the force acting on the test charge at ᾀ from an infinitesimal 

element of the charge distribution ”ὶ located at ὄ ὶȟ—ȟ‰ Ȣ             

                                            

 

 

 

 

 

 

 

 

 

 

Figure 1:  Computing the force on a test charge at ὃ due to a spherically symmetric  

charge distribution ”ὶ. 
 

In this case, we have 

Ὂὶ
ή

τ“‐

”ὶ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ 

i.e., the usual ρ
ὶ

 force law, where the ÃÏÓ term is included because we need only include the 

component in the -z direction, since the perpendicular component of the force will be cancelled 

by the charge element on the other side of the z axis at ‰ “ .  Eliminating ÃÏÓ and stating the 

volume element dVol explicitly, we have  

Ὂὶ
ή

τ“‐

”ὶ

ȿὃὄȿ

ὶ ὶÃÏÓ—

ȿὃὄȿ
ὶ ÓÉÎ— Ὠ‰ Ὠ— Ὠὶ Ȣ 

The distance between the test charge and the small charge element is 

ȿὃὄȿ ὶ ςὶὶÃÏÓ— ὶ   

Substituting ” ὶ and ȿὃὄȿ into the expression for Ὂὶ  and performing the integration in ‰  

gives 

Ὂ ὶ
ή‘

ς“‐ὥ

Ὡ ὶ ὶÃÏÓ—

ὶ ςὶὶÃÏÓ— ὶ
ὶ ÓÉÎ— Ὠ— Ὠὶ Ȣ 

This integral can be done in closed form (by Mathematica), leading to 

Ὂ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

ς‘ὶ

ὥ

ς‘ὶ

ὥ
     

ᾀ 

ὄ ὶȟ—ȟ‰  

— 

 

”ὶ 

ὃ ὶȟπȟπ 
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i.e., the usual ρ
ὶ

 force law, with a correction that has an effect only near the origin.  Performing 

the final integral to find the modified potential energy for the 1S state:  

ὠ ὶ Ὂ ὶ Ὠὶ  

leads to 

ὠ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

‘ὶ

ὥ
    Ȣ 

i.e., the modified potential energy ὠ ὶ looks like the usual Coulomb potential energy ὠὶ 

with a correction that has an effect only near the origin, as shown in Figure 2(b). 

 
Figure 2:  First iteration 1S ground state radial wavefunctions and potentials ( wavefunctions 

on arbitrary unit scales to allow them to be plotted together; potentials are scaled relative to  

ὠ π  ).  (a) Large spatial scale, showing the exponentially decaying electron 

charge density and the steep, sin gular Coulomb potential.  (b)  Smaller spatial scale, 

showing the scaled -down nucleus charge density, and the corresponding modified potential 

╥ ╢►, which is not singular at the origin.   

 

 

4ÚÐÕÎɯ+ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌȮɯÐÛɯÊÈÕɯÉÌɯÚÏÖÞÕɯÛÏÈÛɯÛÏÌɯÝÈÓÜÌɯÖÍ ὠ ὶ at ὶ π is  

ὠ π
ή‘

τ“‐ὥ
 

ή

τ“‐ὶ
     

ÞÏÌÙÌɯÞÌɯËÌÍÐÕÌɯÛÏÌɯÜÚÌÍÜÓɯɁÊÜÛÖÍÍɯÙÈËÐÜÚɂɯÈÚɯɯὶ  , and thus we may restate ὠ ὶ in the 

slightly more concise form:  

ὠ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

ὶ

ὶ
    Ȣ 

 

 

Electron  
charge density 

ήὙ ὶ  

Nucleus  
charge density 

” ὶ  
 

Coulomb 
Potential 
V(r)  Coulomb 

Potential 
V(r)  

Modified 
Potential
ὠ ὶ 

(a)  
 

(b)  

Nucleus  
charge density 

” ὶ  
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2.2.2. 2S state 

For the 2S state, the conventional wavefunction solution is  

 ὶ
ρ

τЍς“ὥ ϳ
ς
ὶ

ὥ
Ὡ  

so the scaled-ËÖÞÕȮɯÕÖÙÔÈÓÐáÌËɯÕÜÊÓÌÈÙɯÊÏÈÙÎÌɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯÈÔ×ÓÐÛÜËÌɂɯÞÐÓÓɯÉÌ 

ὔ ὶ ‘ϳ ‘ὶ
‘ϳ

τЍς“ὥ ϳ
ς
‘ὶ

ὥ
Ὡ  

and the first -iteration charge density ” ὶ will be  

” ὶ ήὔ ὶ ή‘ȿ ‘ὶȿ
ή‘

σς“ὥ
ς
‘ὶ

ὥ
Ὡ  Ȣ 

Substituting ” ὶ into the expression for Ὂᾀ  and performing the integration in ‰ gives 

Ὂ ὶ
ή‘

φτ“‐ὥ

Ὡ ς
‘ὶ
ὥ ὶ ὶÃÏÓ—

ὶ ςὶὶÃÏÓ— ὶ
ὶ ÓÉÎ— Ὠ— Ὠὶ Ȣ 

This integral can be done in closed form (by Mathematica), leading to 

Ὂ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

‘ὶ

ὥ

ρ

ς

‘ὶ

ὥ

ρ

τ

‘ὶ

ὥ
     

which le ads to the modified potential energy for the 2S state  

ὠ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

σ

τ

‘ὶ

ὥ

ρ

τ

‘ὶ

ὥ

ρ

ψ

‘ὶ

ὥ
    Ȣ 

4ÚÐÕÎɯ+ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌȮɯÐÛɯÊÈÕɯÉÌɯÚÏÖÞÕɯÛÏÈÛɯÛÏÌɯÝÈÓÜÌɯÖÍ ὠ ὶ at ὶ π is  

ὠ π
ή‘

ρφ“‐ὥ
 

ή

τ“‐ τὶ

ρ

τ
ὠ π  Ȣ 

And we can restate ὠ ὶ in the slightly more concise form:  

ὠ ὶ
ή

τ“‐ὶ
ρ Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
    Ȣ 

ὠ ὶ is shown in Figure  3. 
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Figure 3:  Modified Potential ὠ ὶ for the 2S state, scaled as in Figure 2.  The unmodified Coulomb 

potential is shown as a dashed line for reference .   

 

2.2.3. 2P state 

For a cylindrically symmetric charge distribution ”ὶȟ— such as the 2P state, the calculation is 

more involved.  Without loss of generality, we can place the test charge at point  

ὃ ὶȟ—ȟπ in the xz plane.  The first step is to find the force acting on the test charge at ὃ 

from an infinitesimal element of the charge distribution ”ὶȟ— located at ὄ ὶȟ—ȟ‰ . 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Computing the force on a test charge at ὃ due to a cylindrically symmetric  

charge distribution ”ὶȟ—. 

ὄ ὶȟ—ȟ‰  

 

”ὶȟ— 

— ᾀ 

ώ 

ὼ 

ὃ ὶȟ—ȟπ 
— 

‰  

ὕ 

ὅ ὶȟ—ȟπ 

Coulomb 
Potential 
V(r)  

Modified 
Potential
ὠ ὶ 
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For the 2P state, the conventional wavefunction solution is 

 ὶȟ—
ρ

τЍς“ὥ ϳ

ὶÃÏÓ—

ὥ
Ὡ  

so the scaled-ËÖÞÕȮɯÕÖÙÔÈÓÐáÌËɯÕÜÊÓÌÈÙɯÊÏÈÙÎÌɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯÈÔ×ÓÐÛÜËÌɂɯÞÐÓÓɯÉÌ 

ὔ ὶȟ— ‘ϳ ‘ὶȟ—
‘ϳ

τЍς“ὥ ϳ

‘ὶÃÏÓ—

ὥ
Ὡ  

and the first -iteration charge density ” ὶ will be  

” ὶȟ— ήὔ ὶȟ— ή‘ȟ ‘ὶȟ—
ή‘ὶÃÏÓ—

σς“ὥ
Ὡ  Ȣ 

In this case, we have 

Ὂ ὶȟ—
ή

τ“‐

”ὶȟ—

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ 

i.e., the usual ρ
ὶ

 force law, where the ÃÏÓ term is included because we need only include the 

component in the AO direction, since we will be integrating the force along the line at angle —  

in the xz plane; perpendicular forces will not contribute to the potential energy.   

        The distance between the test charge and the small charge element is 

ȿὃὄȿ ὶ ςὶὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ— ὶ    Ȣ 

Using 

ÃÏÓ
ὶ ὶ

ȿὃὄȿ
 

where ὶ is chosen so that  !/Ṷ"# (note that ὶ ȿὕὅȿ is not the cutoff radius ὶ : 

ὶ ὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ—  
 

and stating the volume element dVol explicitly, we have  
 

Ὂ ὶȟ—
ή

τ“‐

” ὶȟ—ȟ‰  ὶ ὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ—  

ὶ ςὶὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ— ὶ
ὶ ÓÉÎ— Ὠ‰ Ὠ— Ὠὶ  Ȣ 

 

Substituting ” ὶȟ—, and recognizing that, because of the symmetry of the problem, the 

contribution from the +y and ɬy sides of the integral are equal, so we can just take twice the 

integral of  ‰ over the range πȟ“,  gives 
 

Ὂȟ ὶȟ—
ή‘

φτ“‐ὥ

Ὡ  ὶ ÃÏÓ—  ὶ ὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ—  

ὶ ςὶὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ— ὶ
ὶ ÓÉÎ—Ὠ‰Ὠ—Ὠὶ  Ȣ 

 

There are two interesting special cases that are easier to solve than the general case, and can be 

used to verify the general case:  (1)  — π , and (2)  —ὃ
“

ς
  . 
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In the case  — π, we have 

Ὂ ὶȟπ
ή‘

φτ“‐ὥ

Ὡ  ὶ ÃÏÓ—  ὶ ὶÃÏÓ— 

ὶ ςὶὶÃÏÓ— ὶ
ὶ ÓÉÎ—Ὠ‰Ὠ—Ὠὶ  Ȣ 

Performing the integration in ‰  gives 

Ὂ ὶȟπ
ή‘

φτ“‐ὥ

Ὡ  ὶ ÃÏÓ—  ὶ ὶÃÏÓ— 

ὶ ςὶὶÃÏÓ— ὶ
ὶ  ÓÉÎ—Ὠ—Ὠὶ  Ȣ 

This integral can be done in closed form (by Mathematica), leading to  

Ὂ ὶ
ή

τ“‐ὶ
ρ σφ

‘ὶ

ὥ
Ὡ σφ

‘ὶ

ὥ
σφ
‘ὶ

ὥ
ρωχ

‘ὶ

ὥ
ς
‘ὶ

ὥ

ρ

ς

‘ὶ

ὥ

ρ

ψ

‘ὶ

ὥ
     

which leads to the modified potential energy for the 2P state at — π 

ὠ ὶȟπ
ή

τ“‐ὶ
ρ ρς

‘ὶ

ὥ
Ὡ ρς

‘ὶ

ὥ
ρς
‘ὶ

ὥ
χ
ρρ

τ

‘ὶ

ὥ

σ

τ

‘ὶ

ὥ

ρ

ψ

‘ὶ

ὥ
    Ȣ 

which can be re-stated in the slightly more concise form 

ὠ ὶȟπ
ή

τ“‐ὶ
ρ ρς

ὶ

ὶ
Ὡ ρς

ὶ

ὶ
ρς
ὶ

ὶ
χ
ρρ

τ

ὶ

ὶ

σ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
    Ȣ 

Using a 3rd ÖÙËÌÙɯÈ××ÓÐÊÈÛÐÖÕɯÖÍɯ+ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌȮɯÐÛɯÊÈÕɯÉÌɯÚÏÖÞÕɯÛÏÈÛɯÛÏÌɯÝÈÓÜÌɯÖÍ ὠ ὶȟπ at 

ὶ π is  

ὠ πȟπ
ή‘

ρφ“‐ὥ
 

ή

τ“‐ τὶ
ὠ π

ρ

τ
ὠ π Ȣ 

ὠ ὶȟπ is shown in Figure 5. 

        In the case  —   , we have 

Ὂ ὶȟ
“

ς

ή‘

φτ“‐ὥ
Ὡ  ὶ ÓÉÎ—ÃÏÓ—  

ὶ ὶÓÉÎ—ÃÏÓ‰

ὶ ςὶὶÓÉÎ—ÃÏÓ‰ ὶ
Ὠ‰Ὠ—Ὠὶ Ȣ 

The ‰ integral can be done explicitly by Mathematica, leading to:   
 

Ὂ ὶȟ
“

ς

ή‘

φτ“‐ὥ

Ὡ  ὶ

ὶ
ÓÉÎ—ÃÏÓ— 

ὶ ὶ Ὁ Ὀ ὑ

Ὀ Ὀ
 Ὠ—Ὠὶ Ȣ 

where  

Ὁ Ὁ
τὶὶÓÉÎ—

Ὀ
  

ὑ ὑ
τὶὶÓÉÎ—

Ὀ
  

Ὀ ὶ ὶ ςὶὶÓÉÎ—  
Ὀ ὶ ὶ ςὶὶÓÉÎ—  

 

and K and E are the complete elliptic integrals of the first and second kind, respectively.  
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        Currently, we have not been able to carry out the remaining three integrations to obtain 

 ὠ ὶȟ .  However, it is possible to do a numerical integration, and then fit a curve of a similar 

form as  ὠ ὶȟπ, leading to 

ὠ ὶȟ
“

ς

ή

τ“‐ὶ
ρ

Ὡ ρ
σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ρω

ὶ

ὶ

ρ

ρςψ

ὶ

ὶ

ρ

υρς

ὶ

ὶ

ρ

ρχȟπππ

ὶ

ὶ

ρ

ςτπȟπππ

ὶ

ὶ

ρ

ρππȟπππ

ὶ

ὶ

ρ

φȟπππȟπππȟπππ

ὶ

ὶ

ρ

ρππȟπππȟπππȟπππȟπππ

ὶ

ὶ
    Ȣ 

ὠ ὶȟπ and ὠ ὶȟ  are shown in Figure 5. 

 

 

Figure 5:  Modified Potentials ὠ ὶȟπ and ὠ ὶȟ  for the 2P state, scaled as in Figure 2.  The 

unmodified Coulomb potential is shown as a dashed line for reference .   

 

 

Turning now to the general case, isolating the ‰ integral gives 

Ὂ ὶȟ—
ή‘

φτ“‐ὥ
Ὡ  ὶ ÓÉÎ—ÃÏÓ—  

 ὶ ὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ—  

ὶ ςὶὶ ÓÉÎ—ÓÉÎ—ÃÏÓ‰ ÃÏÓ—ÃÏÓ— ὶ
Ὠ‰Ὠ—Ὠὶ Ȣ 

The ‰ integral can be done explicitly by Mathematica, leading to:   
 

Ὂ ὶȟ—
ή‘

φτ“‐ὥ
Ὡ  ὶ ÓÉÎ—ÃÏÓ— 

ὶ ὶ Ὁ Ὀ ὑ

ὶὈ Ὀ
 Ὠ—Ὠὶ Ȣ 

 

Coulomb 
Potential 

V(r)  

Modified 
Potential

ὠ ὶȟ  

Modified 
Potential
ὠ ὶȟπ 
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where  

Ὁ Ὁ
τὶὶÓÉÎ—ÓÉÎ—

Ὀ
  

ὑ ὑ
τὶὶÓÉÎ—ÓÉÎ—

Ὀ
  

Ὀ ὶ ὶ ςὶὶÃÏÓ— —  
Ὀ ὶ ὶ ςὶὶÃÏÓ— —  

 

and K and E are the complete elliptic integrals of the first and second kind, respectively.  

        Currently, we have not been able to carry out the remaining three integrations to obtain 

 ὠ ὶȟ—  .  However, it is possible to do a numerical integratio n, and obtain a very good fit with 

the interpolation formula below, which has been tested at   — πȟ ȟȟ ȟḊ 

ὠ ὶȟ—  ÃÏÓ—ὠ ὶȟπ ρ ÃÏÓ—  ὠ ὶȟ
“

ς
    

                            ὠ ὶȟ
“

ς
ÃÏÓ— ὠ ὶȟπ  ὠ ὶȟ

“

ς
   Ȣ 

ὠ ὶȟ—  is shown in Figure 5.  Note that this potential does not have spherical symmetry near 

the origin, but it converges to the usual spherically symmetric Coulomb potential a few ὶ away 

from the origin.  

 

 
 

Figure 6:  Modified Potential ὠ ὶȟ—  for the 2P state, scaled as in Figure 2.   
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2.2.4. Relationship to other Cutoff Coulomb Potentials  

It should be noted that many other physicists have recognized the problem with the singular 

Coulomb potential, and proposed a number of ingenious candidate for ms to cut off the excursion 

to Њ near the origin, as shown in Table 1, for reference and comparison.  The present work 

differs from previous approaches in that  

¶ the cutoff radius is not a free parameter (which is usually difficult to either determine or 

justify), but is determined self -consistently from two -body considerations;  

¶ the potential may have inflection points in r (2S) 

¶ the potential may not have spherical symmetry near the origin  (2P). 

¶ the potential may not be monotonic in r (2P). 

 

Author  Approach  Formula  

Wannier 

(1943) 

Cutoff 

Coulomb 
ὠὶ

ừ
Ử
Ừ

Ử
ứ ή

τ“‐ὶ
 ȟὶ ὶ

ή

τ“‐ὶ
 ȟὶ ὶ 

 

Mehta & 

Patil (1978) 

Truncated 

Coulomb 

(first -order) 

ὠὶ
ή

τ“‐ ὶ ὶ
 

Patil (1981) 

Truncated 

Coulomb 

(second-order) 

ὠὶ
ή

τ“‐ ὶ ὶ
 

Moshinsky 

(1989) 

Dirac 

Oscillator  
ὠὶ

ừ
Ử
Ừ

Ử
ứ ή

τ“‐ὶ
                   ȟὶ ὶ  

ή

τ“‐ὶ
ς
ὶ

ὶ
 ȟὶ ὶ 

 

Mead 

(2000) 

Spherical 

Conducting 

Charged Shell 

ὠὶ

ừ
Ử
Ừ

Ử
ứ ή

τ“‐ὶ
                             ȟὶ ὶ  

ή

τ“‐ὶ

σ

ς

ρ

ς

ὶ

ὶ
 ȟὶ ὶ 

 

Hall (2009) 
General Soft-

Core Coulomb 
ὠὶ

ή

τ“‐ ὶ ὶ
 

Present 

Work 

(2014) 

Two-Body 1S ὠ ὶ ρ Ὡ ρ  ,  ὶ  

Two-Body 2S ὠ ὶ ρ Ὡ ρ  , ὶ  

Two-Body 2P 

 

   ὠ ὶȟπ
ή

τ“‐ὶ
ρ ρς

ὶ

ὶ

Ὡ ρς
ὶ

ὶ
ρς
ὶ

ὶ
χ
ρρ

τ

ὶ

ὶ

σ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
ȟ 
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ὠ ὶȟ
“

ς

ή

τ“‐ὶ
ρ

Ὡ ρ
σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ρω

ὶ

ὶ

ρ

ρςψ

ὶ

ὶ

ρ

υρς

ὶ

ὶ
ρ

ρχȟπππ

ὶ

ὶ

ρ

ςτπȟπππ

ὶ

ὶ

ρ

ρππȟπππ

ὶ

ὶ

ρ

φȟπππȟπππȟπππ

ὶ

ὶ

ρ

ρππȟπππȟπππȟπππȟπππ

ὶ

ὶ
ȟ 

ὠ ὶȟ—  ÃÏÓ—ὠ ὶȟπ ρ ÃÏÓ—  ὠ ὶȟ    , ὶ  

 

Table 1:  Historical approaches to Cutoff Coulomb Potential, compared to the non -

relativistic modified potentials of the present work.  

 

 

 

2.3. Non -relativistic Problem Statement in the General Case  

 

The General non-relativistic formulation of the present approach is given below.  We begin with 

the usual non-relativistic time -independent Schrödinger  equation for the Hydrogen atom:  

ᴐ

ςά
ᶯὶȟ—ȟ‰ Ὁ ὠὶȟ—ȟ‰ ὶȟ—ȟ‰ π  ȟ 

But instead of assuming a Coulomb potential for an infinitely massive nucleus, we now assume 

the potential is determined by the  effective nuclear charge density from an assumed two-body 

effect, which we model as a scaled-down version of the electron charge density, scaled by the 

ratio of the masses: 

ὠὶȟ—ȟ‰ Ὂᾀȟ—ȟ‰ Ὠᾀ  

Ὂὶȟ—ȟ‰  
ή

τ“‐

”ὶȟ—ȟ‰

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ 

”ὶȟ—ȟ‰ ή ‘ ȿ‘ὶȟ—ȟ‰ȿ 

Therefore 

ὠὶȟ—ȟ‰
ή‘

τ“‐
 
 ȿ‘ὶȟ—ȟ‰ȿ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ Ὠᾀ 

And finally we have (in the non -relativistic case): 

ᴐ

ςά
ᶯὶȟ—ȟ‰ Ὁ

ή‘

τ“‐
 
 ȿ‘ὶȟ—ȟ‰ȿ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ Ὠᾀὶȟ—ȟ‰ π  ȟ 

Now we can see that this is a nonlinear integro-differential equation, where the effect of the 

nonlinearity is limited to a region very close to the origin.   
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2.4. Energy and Electron Wavefunction for the 1S state  

 

The next step is to compute the new energy and electron wavefunction corresponding to this 

modified Coulomb potential   ὠρὛὶ.  This is a non-trivial task, even in the simplest case of the 

first iteration of the non -relativistic 1S ground state.  We will first set up the proble m, and then 

show the various methods we have used to solve the problem. 

        The energy level of the unmodified 1S ground state is 

Ὁ
ᴐ

ςάὥ
 Ȣ 

Because we have made a modification to the potential near the origin, we should expect that there 

should be a small change in the energy for a self-consistent wavefunction solution.  Let us define 

the modified energy Ὁ  as a tiny fractional change to the original energy: 

Ὁ Ὁ ρ ‐
ᴐ

ςάὥ
ρ ‐ȟ 

where ‐ is a small, dimensionless quantity.   

        We can estimate the approximate sign and magnitude of ‐ for the ground state 1S, based on 

the established measurements of Lamb Shift, in which the ςὛ energy is shifted upward, relative 

to ςὖ, by about 1/2,000,000 of the value of ȿ Ὁ ȿ , where Ὁ  is negative, as shown in Figure 7.   

But since the 1S shifts are about twice the size of the 2S shifts, we would expect the Ground State 

Shift to have the same sign and about twice the magnitude of the Lamb Shift, leading roughly to 

‐ 
ȟ ȟ

  .  This estimate will be needed later as a starting point for a numerical solution.  

        For the 1S ground state, n=1 and l=0, so we have, in our current iteration: 

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ςά

ᴐ
Ὁ ὠ ὶ Ὑ ὶ π   Ȣ 

Substituting  the previous expressions for Ὁ  and ὠ ὶ, and using the fact that 

ή

τ“‐

ᴐ

άὥ
  

leads to the Modified Ground State Equation (along with its two boundary conditions and the 

charge normalization condition):  
 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
ρ Ὡ ρ

ὶ

ὶ
Ὑ ὶ π

Ὑ π π

Ὑ Њ π

Ὑ ὶ ὶ Ὠὶ ρ
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and the challenge is to solve for the fractional energy change ‐ and the wavefunction  Ὑ ὶȢ   

 

 
Figure 7:  Energy Levels for Atomic Hydrogen for the nonrelativistic Schrod inger and 

relativistic Dirac models.  

 

2.4.1. Baseline solution for the 1S state  

 

We have found it useful to define the Baseline Ground State Equation as 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
Ὑ ὶ π 

where we have started with the Modified Ground State Equation, and simply dropped the 

exponential term, which described the correction near the origin.  This is a linear sub-problem, 

the solution of which can be found by Mathematica:  
 

Ὑ ὶ Ὡ ὧὟ ρ
ρ

ρ ‐
 ȟςȟ
ςὶ

ὥ
ρ ‐ ὧ Ὂ ρ

ρ

ρ ‐
 Ƞ ςȠ
ςὶ

ὥ
ρ ‐  
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where Ὗὥȟὦȟᾀ ÐÚɯ3ÙÐÊÖÔÐɀÚɯ"ÖÕÍÓÜÌÕÛɯ'à×ÌÙÎÌÖÔÌÛÙÐÊɯ%ÜÕÊÛÐÖÕ, first described by Francesco 

Tricomi in 1947, and Ὂ ὥȠὦȠᾀ is *ÜÔÔÌÙɀÚɯ "ÖÕÍÓÜÌÕÛɯ 'à×ÌÙÎÌÖÔÌÛÙÐÊɯ %ÜÕÊÛÐÖÕȮɯ ÍÐÙÚÛɯ

described by Kummer in 1837.  Since we have the boundary condition  ὙЊ π and Ὂ ὥȠὦȠᾀ 

diverges hypergeometrically for large ὶ (i.e., it overcomes the exponential), while Ὗὥȟὦȟὶ  goes 

to 0 for large ὶ, we must have ὧ πȟ  leading to   

Ὑ ὶ Ὡ ὧὟ ρ
ρ

ρ ‐
 ȟςȟ
ςὶ

ὥ
ρ ‐   Ȣ 

The baseline solution Ὑ ὶ describes the behavior of  Ὑ ὶ for  ὶḻὶ, where the exponential 

correction term that was dropped has no effect.  This property will be useful in the numerical 

solution. 

 

2.4.2. Difference solution for the 1S state  

        Let us define the modified solution   Ὑ ὶ as composed of the original unmodified 

solution  Ὑ ὶ with a small difference solution Ὑ ὶ added to it:  

  Ὑ ὶ Ὑ ὶ Ὑ ὶ 
where we recall that the original unmodified Schrödinger radial solution is defined as  

Ὑ ὶ
ς

ὥ ϳ
Ὡ Ὑ Ὡ  ȟ 

where we define for convenience 

Ὑ
ς

ὥ ϳ
  Ȣ 

Substituting  Ὑ ὶ into the Modified Ground State Equation and subtracting off the original 

Schrödinger radial solution leads to a new equation in Ὑ ὶ 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
ρ Ὡ ρ

ὶ

ὶ
Ὑ ὶ

‐

ὥ

ς

ὶὥ
Ὡ ρ

ὶ

ὶ
Ὑ ὶ π

 

Note that this difference formulation eliminates the trivial null soluti on for Ὑ ὶ, because of 

the presence of the driving term in  Ὑ ὶ.  Because of the nonlinear terms, Mathematica cannot 

solve it.  But, as before, we can construct the Baseline version of the difference problem by 

eliminating the nonlinear terms:  

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
Ὑ ὶ

‐

ὥ
Ὑ Ὡ π

Ὑ Њ π 

 

which leads to 

Ὑ ὶ Ὑ ὶ Ὡ
Ѝ
ὧὟ ρ

ρ

Ѝρ ‐
 ȟςȟ
ςὶ

ὥ
Ѝρ ‐   Ȣ 
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which determines the behavior of the difference solution Ὑ ὶ for large ὶ.   

 

In terms of Ὑ ὶ, the full statement of the problem to be solved is: 
 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
ρ Ὡ ρ

ὶ

ὶ
Ὑ ὶ 

‐

ὥ

ς

ὶὥ
Ὡ ρ

ὶ

ὶ
Ὑ ὶ π

Ὑ π Ὑ π
Ὑ

ὥ

Ὑ Њ π 

Ὑ ὶ Ὑ ὶ  ὶ Ὠὶ ρ

 

 

With the Baseline and Difference solutions defined, we can now proceed to find a numerical 

solution to the problem.  

 

2.4.3. Numerical solution for the 1S state  

       Hammerling  et al. (2010) has developed a set of procedures for numerical solution of singular 

eigenvalue problems on semi-infinite domains, with emphasis on Sturm -Liouville problems in 

general, and with the time -independent Schrödinger equation for a central potenti al as a 

particular example.  Their standard approach is to truncate to a bounded interval, start with an 

initial educated guess of the eigenvalue (energy) and use a two-sided shooting method, 

integrating from ὶ π outward, and from ὶ ὶ  inward, and adapting the eigenvalue until 

the two integrated halves match in value and derivatives at an intermediate point, leading to an 

energy value and a complete, continuous function that satisfies the differential equation and both 

boundary conditions.  

        Since we have the analytic Baseline solution for large ὶ which satisfies the ὶ Њ boundary 

condition , we can use that instead of the usual second inward shooting method integration.   

This problem can be solved numerically using the following procedure:  

1. Goal of the procedure :  The procedure is designed to solve for ‐, and for the two 

additional parameters which will define the wavefunction shape:   Ὑ ὶ ȟ  (the 

inside starting value)  and ὧ (the scale factor for the Baseline solution). 

2. Initialization:   Choose an initial value for ‐ρȡ   We used ρȢπ  ρπ.  Choose an initial 

value for  Ὑ ὶ :  We used πȢπππτ Ὑ . 

3. Ɂ.ÜÛÞÈÙËɂ shooting integration :  Define the interval in which to perform the outward 

shooting-method integration f or ὶ running from ὶ  to ὶ .  We used a value of ὶ
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ὥ, and ὶ .  The inside slope is given by Ὑ ὶ Ὑ ὶ

Ȣ  The integration can be done directly in Mathematica by NDSolve . 

4. Ɂ.ÜÛÚÐËÌɂɯÈÕÈÓàÛÐÊɯÚÖÓÜÛÐÖÕ:  3ÏÌɯɁÖÜÛÚÐËÌɂɯÈÕÈÓàÛÐÊɯ!ÈÚÌÓÐÕÌɯÚÖÓÜÛÐÖÕɯ Ὑ ὶ includes 

the scale factor ὧȢ   

5. Continuity Condition:   6ÌɯÕÖÞɯÏÈÝÌɯÈɯÛÙÐÈÓɯɁinÚÐËÌɂɯÕÜÔÌÙÐÊÈÓɯÐÕÛÌÎÙÈÛÐÖÕɯËÖÕÌȮɯÈÕËɯÞÌɯ

ÕÌÌËɯÛÖɯÔÈÛÊÏɯÐÛɯÛÖɯÛÏÌɯɁoutÚÐËÌɂɯÈÕÈÓàÛÐÊɯ!ÈÚÌÓÐÕÌ solution  Ὑ ὶ.  We need two points 

ὶand ὶ at which to match the numerical and analytic solutions.  We used ὶ ςππ ὶ 

and ὶ φππ ὶ, as shown in Figure 9(b) and 9(c). Using the first point at ὶ, we can find 

the value of ὧ, that allows the analytic solution to agree with the numerical solution  at 

ὶ.  With this value of ὧȟ ÞÌɯÊÈÕɯÛÏÌÕɯÊÏÌÊÒɯÛÖɯÚÌÌɯÐÍɯÛÏÌɯɁinÚÐËÌɂɯÈÕËɯÈÕÈÓàÛÐÊɯɁÖÜÛÚÐËÌɂɯ

solutions agree to within some relative tolerance at the second point ὶ.  We set the relative 

continuity tolerance to ρȢπ ρπ .   

6. Charge Normalization  Condition:   We can also numerically integrate the charge 

normalization condition, using the inside numerical solution up to ὶ and using the 

outside analytic solution from ὶ  to   Њ.  We can then check to see if the total charge equals 

1 to within some relative charge tolerance.  We set the charge tolerance to ρȢπ ρπ .   

7. Inner Loop Iteration Condition:   If the charge normalization condition is not met within 

the prescribed charge tolerance, adjust the inside value Ὑ ὶ Ȣ  We used the 

following simple strategy, essentially a discrete Newton -Raphson method:  On the second 

iteration, increase  Ὑ ὶ   by 1%.  On subsequent iterations, linearly interpolate  or 

extrapolate from  the previous best two iterations to the value of  Ὑ ὶ Ȣ  that would 

give 0 charge error.    

8. Inner Loop Iteration:   Loop back to step 3 and repeat until the charge error is less than 

the charge tolerance.  When this condition is met, we will have a charge-normalized 

composite solution that may not yet have agreement between the numerical and analytic 

solutions at ὶ, for a given guess at the energy ‐Ȣ 

9. Outer Loop Iteration Condition:   If the numerical and analytic solutions do not agree  at 

ὶ within the prescribed relative continuity tolerance, adjust the energy level ‐Ȣ  We used 

the following simple strategy, essentially a discrete Newton -Raphson method:  On the 

second iteration, increase ‐ by 1%.  On subsequent iterations, linearly interpolate  or 

extrapolate from  the previous best two iterations to the value of ‐ that would give 0 

relative continuity error.   

10. Outer  Loop Iteration:   Loop back to step 3 and continue adjusting ‐ until the relative 

continuity error is less than the relative continuity tolerance.  When this condition is met, 

we will have a charge-normalized composite solution that is continuous a t ὶ, so we have 

found a consistent value for the energy ‐Ȣ 
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11. Reconstruct Full Wavefunction:   Once the composite numerical/analytic solution for 

Ὑ ὶ has been found, we can use  Ὑ ὶ Ὑ ὶ Ὑ ὶ to reconstruct the final 

modified wavefunction  Ὑ ὶȢ 
 

        Starting from initial values of  ‐ ρȢπ ρπ and  Ὑ ὶ πȢπππτ Ὑ ȟ it  

takes 6 outer-loop iterations to reach a value of ‐ ρȢρψτσπχρπ and 

Ὑ ὶ πȢπππψςρρυψ Ὑ ȟ with ὧ πȢωωωωωψχυυ Ὑ ȟ  with a relative continuity 

error of ςȢς ρπ  and a charge error of σȢτ ρπ .   

        The composite numerical/analytic wavefunction solution is difficult to visualize in a single 

×ÐÊÛÜÙÌɯÉÌÊÈÜÚÌɯÛÏÌɯɁÚÛÐÍÍɂɯÕÈÛÜÙÌɯÖÍɯÛÏÌɯ×ÙÖÉÓÌÔɯÎÐÝÌÚɯÛÏÌɯÚÖÓÜÛÐÖÕɯÍÌÈÛÜÙÌÚɯÖÕɯÝÌÙàɯÚÏÖÙÛɯȹὶ) and 

on very long (ὥ) spatial scales.  We will describe the general features using a conceptual but not-

to-scale diagram in Figure 8, and then support this description with accurate detailed plots at a 

variety of different scales in Figure 9.  

 

 
Figure 8:  Conceptual diagram (not to scale) showing the general features of the modified 

ground state wavefunction   ὙρὛάὶ, with reference to the original ground state 

wavefunction   Ὑ ὶ.  The difference wavefunction   ὙρὛὨὶ is shown in the lower panel.  

Di fferences have been magnified about 75X to show general features.  

 

The original wavefunction   Ὑ ὶ has a cusp at ὶ π.  The modified wavefunction   Ὑ ὶ 

ÏÈÚɯÈɯɁÙÖÜÕËÌËɯÛÖ×ɂɯÈÛɯÈɯÓÖÞÌÙɯÈÔ×ÓÐÛÜËÌɯÝÈÓÜÌȮɯÐÕËÐÊÈÛÐÕÎɯÛÏÈÛɯÚÖÔÌɯÊÏÈÙÎÌɯÏÈÚɯÉÌÌÕɯÓÖÚÛɯÕÌÈÙ 
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the origin.  At the crossover point, about ὶ χȢτωσρπ Í ςυωψ ὶ ρȢτρυ ὥ, the 

modified wavefunction becomes larger than the original wavefunction, indicating that some 

charge has been displaced down the sides of the distribution.  The same charge displacement 

features appear in the difference wavefunction   Ὑ ὶ in the lower panel.  The numerical 

method above works directly to compute   Ὑ ὶ and then recovers Ὑ ὶ in the last step. 

 

 
Figure 9:  Features of the difference wavefunction   ὙρὛὨὶȟ  and modified wavefunction 

Ὑ ὶȟ relative to the original ground state wavefunction   Ὑ ὶ.  (a) Difference 

wavefunction   ὙρὛὨὶȟ plotted over the full range computed by the numerical method.  

Note that this plot is comparable to the lower panel of Figure 8, but it shows the extremely 

small actual scale of the charge displacement regions.  (b) Difference wavefunction 

Ὑ ὶȟ ×ÓÖÛÛÌËɯÐÕɯÛÏÌɯÝÐÊÐÕÐÛàɯÖÍɯÛÏÌɯÛÞÖɯɁÔÈÛÊÏÐÕÎɯ×ÖÐÕÛÚɂɯÜÚÌËɯÐÕɯÚÛÌ×ɯƙ of the numerical 

method.  (c) Difference wavefunction   ὙρὛὨὶȟ showing the continuity between the 

ÕÜÔÌÙÐÊÈÓɯɁÐÕÚÐËÌɂɯÈÕËɯÛÏÌɯÈÕÈÓàÛÐÊɯɁÖÜÛÚÐËÌɂɯÉÈÚÌÓÐÕÌ  ὙρὛὨὄὶȟ  in steps 6 and 7 of the 

numerical method.  Note that this plot is comparable to the lower panel of Figure 8, but it 

shows the extremely small actual scale of the charge displacement regions.  The crossover 

point occurs at about ὶ χȢτωσρπ Í ςυωψ ὶ ρȢτρυ ὥ.  (d) Difference 

wavefunction   ὙρὛὨὶ near the origin, where the numerica ÓɯɁÐÕÚÐËÌɂɯÐÚɯÝÈÓÐËȮɯÈÕËɯÛÏÌɯ

ÈÕÈÓàÛÐÊɯɁÖÜÛÚÐËÌɂɯ Ὑ ὶȟ is not valid.  The purple dotted line is the boundary condition 

Ὑ π  Ȣ  (e) Reconstructed modified charge densities showing the resulting 

ɁÙÖÜÕËÌËɯÛÖ×ɂȭ   Ὑ ὶ agrees with  Ὑ ὶ except near the origin.   Note that this plot 

is comparable to the top center part of the upper panel of Figure 8, but it shows the extremely 

small actual scale (0.2%) of the charge displacement region near the origin (shown 

magnified 75X as a ~15% effect in Figure 8).   
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Now that we have seen the composite numerical/analytic solution for   Ὑ ὶ, we can use it to 

guide us to a good closed-form analytic approximation for   Ὑ ὶ.   

 

 

2.4.4. Taming the Singularity  

We have already found a closed-form expression for the baseline difference solution: 

Ὑ ὶ Ὑ ὶ Ὡ ὧὟ ρ
ρ

ρ ‐
 ȟςȟ
ςὶ

ὥ
ρ ‐   Ȣ 

and a numerical solution for Ὑ ὶ, both plotted in Figure 10(a).  We can use these to determine 

the form of a Taming function Ὕὶ that will transform the singular Ὑ ὶ into the finite 

Ὑ ὶ, namely 

Ὕὶ
Ὑ ὶ

Ὑ ὶ
 Ȣ 

Ὕὶ is plotted in Figure 10(b).   Ὕὶ starts at 0, rises up and asymptotes to a value of 1 after a 

few ὶ lengths, which suggests that ρ Ὡ  might be a reasonable candidate to fit Ὕὶ, as 

plotted in Figure 10(b) (purple line).  The exponential term Ὡ  is not chosen arbitrarily, it is 

chosen to match the exponential correction term in the modified potential.  The fit is close, but far 

from perfect, so we will see that this candidate will require an additional correction.  

 
Figure 10:  Taming the singularity of the baseline solution for the 1S state ɬ  

general form of the Taming Function.   

 

We can tame the singularity at the origin  of Ὑ ὶ by multiplying by ρ Ὡ , which goes 

to zero at the origin, resulting in a new Tamed Baseline function Ὑ ὶ that is finite 

ÌÝÌÙàÞÏÌÙÌɯȹÉàɯ+ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌȺȯ 

Ὑ ὶ 

Ὑ ὶ  

Ὕὶ
Ὑ ὶ

Ὑ ὶ
 

ρ Ὡ   
 

(a)  
 

(b)  
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Ὑ ὶ Ὑ ὶ Ὡ ὧὟ ρ
ρ

ρ ‐
 ȟςȟ
ςὶ

ὥ
ρ ‐ ρ Ὡ    

The new Tamed Baseline function Ὑ ὶ is shown in Figure 11 (purple line):  

 
Figure 11:  Taming the singularity of the baseline solution for the 1S state.   

 

Examination of the residual between the numerical solution and the tamed Baseline solution 

reveals that the residual is very nearly proportional to Ὡ Ȣ  Adding this correction in leads us to 

the Augmented Tamed Baseline functions: 

Ὑ ὶ  ὙρὛὶ Ὡ
ὶ
ὥπ
ρ‐ρὧὟὟ ρ

ρ

ρ ‐ρ
 ȟςȟ
ςὶ

ὥπ
ρ ‐ρ ρ Ὡ ὃπὩ

ςὶ
ὶὧ  

Ὑ ὶ  Ὡ
ὶ
ὥπ
ρ‐ρ ὧὟὟ ρ

ρ

ρ ‐ρ
 ȟςȟ
ςὶ

ὥπ
ρ ‐ρ ρ Ὡ ὃπὩ

ςὶ
ὶὧ  

where a very good empirical match to the numerical solution is achieved with ὃ ρȢπππςχ Ὑρπ ȟ 

as shown in Figure 11 (red dashed line). For many purposes, it would be satisfactory to accept 

this empirically derived approximation.  However, there is a small curvature problem very close 

to the origin that may be unacceptable in some applications.  The remaining steps are designed 

to eliminate this extremely small defect and properly derive the values of the free parameters.  

 

2.4.5. Simple Approximate Solution for the 1S State  

Making the following two approximations, suitable for small ‐: 
 

Ὗ ρ
ρ

ρ ‐
 ȟςȟ
ςὶ

ὥ
ρ ‐ ρ

‐ὥ

τὶ

‐

ς
ÌÎ
ςὶ

ὥ
 

Ὑ ὶ 

Numerical 
 

Baseline Ὑ ὶ  

(singular at origin) 

Tamed Baseline Ὑ ὶ  

(finite at origin) 

Augmented Tamed Baseline  
Ὑ ὶ 
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Ὡ Ὡ  
we have 

Ὑ ὶ Ὡ ὧ ρ
‐ὥ

τὶ

‐

ς
ÌÎ
ςὶ

ὥ
 ρ Ὡ ὃὩ  Ȣ 

Careful analysis shows that the taming function ρ Ὡ  completely tames the   term (i.e. 

its value at the origin and its derivatives all become finite).  However, the taming function 

ρ Ὡ  only succeeds in taming the value of the ÌÎ term at the origin; its first and second 

derivative s are indeterminate at the origin.  In order to have finite first and second derivatives at 

ÛÏÌɯÖÙÐÎÐÕȮɯÐÛɯÐÚɯÕÌÊÌÚÚÈÙàɯÛÖɯɁÛÙÐ×ÓÌ-ÛÈÔÌɂɯÛÏÌɯÌÎ term (i.e., apply the taming function twice 

more), such that an application of +ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌ on the first and second derivatives result in  

finite values, as follows: 

Ὑ ὶ Ὡ ὧ ρ
‐ὥ

τὶ

‐

ς
ρ Ὡ ÌÎ

ςὶ

ὥ
 ρ Ὡ ὃὩ  Ȣ 

Substituting this approximate expression into the Modified Ground State Equation  

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
ρ Ὡ ρ

‘ὶ

ὥ
Ὑ ὶ π ȟ 

collecting terms, carefully neglecting small terms, and setting the dominant error term to zero, 

gives the following equation:  

ὧ σ‘ ς‘ς ὃ ς‘ ς‘ς π Ȣ 

The  Ὑ π π condition leads to: 

ὧ ς‘
‐ρ‘

ς

‐ρ‘
ς

ς
 ὃ ρ ς‘ π Ȣ 

These two equations can be solved for ὃ  and ‐: 

Ǣὃπ
σ ς‘

ς ς‘
ὧὟ 

‐
σ τ‘

‘ρ ‘
ρȢρψυφςσρπφ

τ

‘ς
 

For the first time, we have a physical justification for the Two -Body ground state energy shift ɬ it 

is proportional to the inverse squa re of the proton-to-electron mass ratio ‘.  This approximate 

value for the fractional energy shift agrees within πȢππρσρφρπ or 0.11% of the numerically 

determined value of  ‐ρ ρȢρψτσπχρπφ. 

        The final step to determine ὧ is to satisfy the charge conservation condition.  Substituting 

Ὑ ὶ into  

Ὑ ὶ ὶ Ὠὶ ρ 

leads to  
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ὧ ρ  ‐ρ 
υ

τ



ς
Ὑ πȢωωωωωψψφπ Ὑ  Ȣ 

where  πȢυχχςρυφφτ is the Euler-Mascheroni constant.   

 

The final Simple Approximation for the 1S state is:  

Ὑ ὶ Ὡ ὧ ρ
‐ὥ

τὶ

‐

ς
ρ Ὡ ÌÎ

ςὶ

ὥ
 ρ Ὡ ὃὩ  Ȣ

ὧ ρ  ‐ρ 
υ

τ



ς
Ὑ πȢωωωωωψψφπ Ὑ  

ὃ
σ ς‘

ς ς‘
ὧ ρȢπππςχςρφ Ὑ

‐ρ
σ τ‘

‘ρ ‘ς
ρȢρψυφςσρπ Ȣ
 

 

 

The corresponding charge densities are shown in Figure 11. 

 

 
Figure 11:  Comparing the Simple Approximation and numerical solution for Ὑ ὶȢ  

(a) Both solutions appear identical when viewed at this scale.  (b)  An even finer 

inspection reveals that the Simple Approximation disagrees slightly (relative error of 

0.00001) with the numerical solution in the magnitude of the charge density near the 

origin.     

 

There is a slight error at the origin (relative error of about 0.00001) in the charge density, 

compared to the numeral result.  This is not surprising, since the Simple A pproximation is only 

accurate to first order.   

 

(a)  
 

(b)  
 

Original 
Charge Density 
ήὙ ὶ 

ήὙ ὶ  

ήὙ ὶ 

Numerical 
 ήὙ ὶ 

Simple 
Approximation 

ήὙ ὶ 

Simple 
Approximation 

ήὙ ὶ 

Numerical 
 



37 
 

A more independent way to assess the quality of the Simple Approximation, without resorting 

to comparison to the numerical solution, is to examine the Schrodinger Error ὛὉὶ, which is just 

the left-hand-side of the Modified Ground State Equation multiplied by 
ᴐ

 
: 

ὛὉὶ
ᴐ

ς ά
  Ὑ ὶ

ς

ὶ
Ὑ ὶ

ρ ‐

ὥ

ς

ὶὥ
ρ Ὡ ρ

‘ὶ

ὥ
Ὑ ὶ  Ȣ 

For a perfect solution, of course, we will have ὛὉὶ πȢ  But since the Simple Approximation 

is only an approximation, we expect that ὛὉὶ π for this solution, as shown in Figure 12: 

 
Figure 12:  Schrodinger Error of the Simple Approximation.  The worst -case magnitude 

of the Schrodinger Error is about 1.3. 

 

2.4.6. General Approximate Solution for the 1S State  

We can define an General Approximation with an arbitrary number of terms, and then use the 

Schrodinger Error and its derivatives at a number of zero -points (including the origin) to create 

a corresponding system of equations that can be solved.  Finally, we can optimize the position of 

the zero-points to achieve a minimum integrated squared Schrodinger Error, to give the optimum 

General Approximation for a given number of terms.  

 

Let us define ὔ  to be the number of terms in our approximation, ὔ be the number of Origin 

boundary conditions, and ὔ ὔ ὔ  be the number of non-origin zero points.  We define 

the General Approximation as  

Ὑ ὶ Ὡ ὧ ρ
‐ὥ

τὶ

‐

ς
ρ Ὡ ÌÎ

ςὶ

ὥ
 ρ Ὡ ὃ ρ Ὡ Ὡ  

ὛὉὶ π 

ὛὉπ π 



38 
 

where the ÌÎ  term has been tamed to order ὔ ς so that it can be differentiated ὔ ρ times 

(as needed for the ὔ  boundary conditions at the origin)   and all the deri vatives will be finite.  

The В ὃ ρ Ὡ Ὡ terms constitute a kind of basis set with decaying exponential tail 

and flatness at the origin that increases with  ὲ, suitable to build up finer and finer approximate 

solutions.  

The boundary conditions at the origin correspond to ὛὉπ πȟὛὉᴂπ πȟὛὉᴂᴂπ π, 

etc., i.e., forcing the Schrodinger Error to be zero at the origin, along with its first several 

derivatives.   3ÏÌÚÌɯØÜÈÕÛÐÛÐÌÚɯÙÌØÜÐÙÌɯÌßÛÌÕÚÐÝÌɯÈ××ÓÐÊÈÛÐÖÕɯÖÍɯ+ɀ'Ö×ÐÛÈÓɀÚɯ1ÜÓÌȰ  fortunately, the 

Mathematica Series []  function can compute them directly.  The first four of these Origin 

boundary conditions are:  

 

ὛὉπ π 
Ὑπ

Á

‐Ὑπ

Á

ς‘Ὑπ

Á
σὙ π π 

ὛὉᴂπ π ςὙ π π 

ὛὉᴂᴂπ π 
τ‘Ὑπ

σÁ

Ὑ π

ςÁ

‐Ὑ π

ςÁ

‘Ὑ π

Á

υ

φ
Ὑ π π 

ὛὉᴂᴂᴂπ π 
τ‘Ὑπ

σÁ

Ὑ π

φÁ

‐Ὑ π

φÁ

‘Ὑ π

σÁ

ρ

τ
Ὑ π 

 

where we have relied on the fact that  

Ὑ π π Ȣ 

Substituting into the General Approximation and carefully neglecting small terms gives, for the 

first four Origin boundary conditions:  

ὛὉπ π ςτ ! ‘ ! ρς‘ σφ‘ ! ς ρτ‘ ρς‘ ὧ ρς‘ ρς‘ τ‐‘ ς‐‘ π 

ὛὉᴂπ π 
ωφ ! ‘ ! τψ‘ ρως‘ ! ρπ‘ χφ‘ ρρς‘ ! ρς‘ ςψ‘ ρφ‘

ὧ ρπ‘ ςψ‘ ρφ‘ υ‐‘ ς‐‘ π 

ὛὉᴂᴂπ π 

σςπ ! ‘ ! ρφπ‘ ψππ‘ ! σφ‘ σςψ‘
ςπππ‘

σ

! υψ‘
υωφ‘

σ
ςππ‘ ! ςς‘

ψψ‘

σ

τπ‘

σ

ὧ ςς‘
ως‘

σ

τπ‘

σ

ρπ‐‘

σ

τ‐‘

σ
π 

ὛὉᴂᴂᴂπ π 

ωφπ ! ‘ ! τψπ‘ ςψψπ‘ ! ρρς‘ ρςρφ‘ σρςπ‘

! ςσς‘ ρπσς‘ ρττπ‘ !
τςψ‘

σ
σρφ‘ ςτψ‘  

!
φτ‘

σ

υφ‘

σ
ψ‘ ὧ

φψ‘

σ
ςπ‘ ψ‘ ‐‘

ς‐‘

σ
π 
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The equations for the ὔ ὔ ὔ  non-origin zero points are determined straightforwardly by 

choosing the points  ὶȟ ὶȟȣ  ὶ , and substituting those values into  

ὛὉὶ π.  Good initial values for these points are  ὶ  ςὶȟ ὶ  ὶȟ ὶ  ὶȟ etc., i.e., a 

geometrically decreasing sequence starting at  ὶ  ςὶȢ  These points will be adjusted in an 

optimization loop, which is minimizing the Total Squared Schr odinger Error (TSSE) 

 433% ὛὉὶ Ὠὶ 

ÜÚÐÕÎɯ !ÙÌÕÛɀÚɯ/ÙÐÕÊÐ×ÈÓɯ  ßÐÚɯ ,ÌÛÏÖËɯÐÕɯ,ÈÛÏÌÔÈÛÐÊÈɀÚɯFindMinimum[]  function.  As an 

illustrative example, consider the case where there are ὔ φ terms in our approximation, ὔ

σ Origin boundary conditions, and ὔ σ non-origin zero points.  We will have a total of 8 

variables to solve for:  {‐ȟὧȟ!ȟ!ȟ!ȟ!ȟ!ȟ!}, and we will have the following 8 equations : 

Ὑᴂπ π ς !‘
ρ

ς
! ς ‐ τ‘

ρ

τ
ὧ ψ‘ ς‐‘‐‘ ς‐‘  

ὛὉπ π ςτ ! ‘ ! ρς‘ σφ‘ ! ς ρτ‘ ρς‘ ὧ ρς‘ ρς‘ τ‐‘ ς‐‘ π 

ὛὉᴂπ π 
ωφ ! ‘ ! τψ‘ ρως‘ ! ρπ‘ χφ‘ ρρς‘ ! ρς‘ ςψ‘ ρφ‘

ὧ ρπ‘ ςψ‘ ρφ‘ υ‐‘ ς‐‘ π 

ὛὉᴂᴂπ π 

σςπ ! ‘ ! ρφπ‘ ψππ‘ ! σφ‘ σςψ‘
ςπππ‘

σ

! υψ‘
υωφ‘

σ
ςππ‘ ! ςς‘

ψψ‘

σ

τπ‘

σ

ὧ ςς‘
ως‘

σ

τπ‘

σ

ρπ‐‘

σ

τ‐‘

σ
π 

ὛὉὶ π 

Initial value:  
 ὶ  ςὶ 

! φρχυυȢφɸτπȢςχρσ‐ ! χςωχρȢρɸτςȢρψψρ‐
! ψτχτφȢτɸττȢρφςτ‐ ! ωχρπρȢσɸτφȢρωυψ‐

! ρρππυφȢφɸτψȢςψωφ‐ ! ρςσφσσȢτυɸυπȢττυτχ‐

ὧ ρςσχστȢσ υψτωωωυσȢωω‐ π

 

ὛὉὶ π 
Initial value:  
 ὶ  ὶȟ 

! ωτψτσσȢψ φχȢψψπρς‐ ! ωχχσχχȢυ συȢπςσρ‐

! ωστσσψȢω ωȢχψςςυ‐ ! χψχπςψȢς φωȢτχρςσ‐

! τωσσωτȢυ ρτχȢφπυσςχ‐ ! ψυωȢτφσψπɸςτψȢτωφσ‐

ὧ ρψυσȢτυ ψȢςωφχςρπ‐ π

 

ὛὉὶ π 
Initial value: 

 ὶ  
ρ

ς
ὶȟ 

! ρτσσσχχȢχ σωφȢχυςσφ‐ ! υψςυσωȢυɸυπςȢρςςτ‐

! ψωυςχψȢυ υωυȢχυωυ‐ ! ςωτχφχςȢσ φςψȢσρψτ‐

! τωφρσψχȢχ τωφȢωωςυςφς‐ τωυωωτψȢς !

ὧ τωυυψωυȢσ τȢυρπτςρπ‐ π
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Ὑ ὶ ὶ Ὠὶ ρ ὧ ρ  ‐ρ 
υ

τ



ς
Ὑ  

After 70 iterations, this set of equations leads to the final solution: 

 

‐ ρȢρψσςρςωτρπ
       !     ρȢπππςφυτςς Ὑ               

  ! τȢτωυρτυυρπ Ὑ

  ! τȢςχτπωσσρπ Ὑ

  ! τȢρυρςρχπρπ Ὑ

  ! τȢπφωτψσφρπ Ὑ

   !    ρȢσωρρςχχρπ Ὑ  
   ὧ     πȢωωωωωψψφςτ Ὑ        

 

 

This approximate value for the fractional energy shift agrees within πȢππρπωτρπ or 0.092% 

of the numerically determined value of  ‐ρ ρȢρψτσπχρπφ, a slight improvement over the 

previous Simple Approximation.  

 

The corresponding charge densities for the General Approximation are shown in Figure 13.  The 

approximation is now indistinguishable from the numerical solution at the scale plotted in Figure 

13(b), and is greatly improved from the Simple Approximation plotted  in Figure 11(b). 

 

 
Figure 13:  The General Approximation (╝╣ , ╝╞  , ╝╟ ), compared with the 

numerical solution for Ὑ ὶȢ  (a) Both solutions appear identical when viewed at this 

scale.  (b)  Even at this finer scale, the approximate solution and numerical solutions are 

indistinguishable.     
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The corresponding Schrodinger Error is shown in Figure 14.  The worst -case Schrodinger Error 

is about 0.0032, reduced by a factor of about 406 from the worst-case Schrodinger Error of 1.3 in 

Figure 12. 

 

 

 
Figure 14:  Schrodinger Error of the General Approximation (╝╣ , ╝╞  , ╝╟ ),.  

The worst -case magnitude of the Schrodinger  Error is about 0.0032, a factor of 406 

reduction from the previous Simple Approximation.  

 

The General Approximation appears to converge toward the numerical solution;  increasing  the 

number of terms reduces the Schrodinger Error further and decreases the energy discrepancy 

between the General Approximation and the numerical solution.  For example, with ὔ ψ, ὔ

σ , ὔ υ, we find ‐ ρȢρψσψρυτρπ, within πȢπππτωφρπ or 0.042% of the 

numerically determined value of  ‐ρ ρȢρψτσπχρπφ, a factor of 2 smaller than the previous 

best General Approximation.  The worst -case Schrodinger Error is reduced to 0.0008, a factor of 

4 smaller than the previous best General Approximation,  as shown in Figure 15. 
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Figure 15:  Schrodinger Error of the General Approximation (╝╣ , ╝╞  , ╝╟ ),.  

The worst -case magnitude of the Schrodinger Error is about 0.0008, a factor of 4 reduction 

from the previous best General Approximation.  

Beyond ὔ ψ, the method appears to continue converging toward the numerical values, but 

slowly, and compute time goes up very fast at ὔ ρπ and beyond. 

 

Despite finding a good closed-form approximation to the modified ground state wavefunction, 

we have not yet been able to find an exact solution.  For the moment, we must leave this situation 

as it is, and use the methods we have developed so far to compute the modified energy and 

wavefunctions for the 2S and 2P states, so that we can determine the 1S-2S and nonrelativistic 

Lamb Shift estimates for the current Two-Body approach.  

 

2.5. Energy and Electron Wavefunction for the 2S state 

The next step is to compute the new energy and electron wavefunction for the 2S state, 

corresponding to this modified Coulomb p otential  ὠςὛὶ, following the methods we used for 

the 1S ground state. 

        The energy level of the unmodified 2S ground state is 

Ὁ
ᴐ

ψάὥ
 Ȣ 

As before, we define the modified energy Ὁ  as a tiny fractional change to the original energy: 

Ὁ Ὁ ρ ‐
ᴐ

ψάὥ
ρ ‐ ȟ 

where ‐ is a small, dimensionless quantity.   

        We can estimate the approximate sign and magnitude of ‐ for the 2S state, based on the 

established measurements of Lamb Shift, in which the ςὛ energy is shifted upwar d, relative to 

ςὖ, by about 1/2,000,000 of the value of ȿ Ὁ ȿ , or about 1/500,000 of the value of ȿ Ὁ ȿ where 

Ὁ  is negative, as shown in Figure 7, leading roughly to ‐
ȟ
  .   
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        For the 2S state, n=2 and l=0, so we have, in our current iteration:  

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ςά

ᴐ
Ὁ ὠ ὶ Ὑ ὶ π   Ȣ 

Substituting  the previous expressions for Ὁ  and ὠ ὶ leads to the Modified 2S State Equation 

(along with its two boundary conditions and the charge normalization condition):  
 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

τὥ

ς

ὶὥ
ρ Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
Ὑ ὶ π

Ὑ π π 

Ὑ Њ π 

Ὑ ὶ ὶ Ὠὶ ρ

 

 

and the challenge is to solve for the fractional energy change ‐ and the wavefunction  Ὑ ὶȢ   

         

The Baseline 2S Equation is 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

τὥ

ς

ὶὥ
Ὑ ὶ π 

where we have started with the Modified 2S Equation, and simply dropped the exponential term, 

which described the correction near the origin.  Taking into account the boundary condition at 

ὶ Њ, the solution is of the form  

Ὑ ὶ Ὡ ὧὟ ρ
ς

ρ ‐
 ȟςȟ
ὶ

ὥ
ρ ‐   Ȣ 

Let us define the modified solution   Ὑ ὶ as composed of the original unmodified 

solution  Ὑ ὶ with a small difference solution Ὑ ὶ added to it:  

  Ὑ ὶ Ὑ ὶ Ὑ ὶ 
where we recall that the original unmodified 2S Schrödinger radial solution is defined as  

Ὑ ὶ
ρ

ςЍςὥ ϳ
ς
ὶ

ὥ
Ὡ  

where we define for convenience 

Ὑ
ρ

ςЍςὥ ϳ
  Ȣ 

Substituting  Ὑ ὶ into the Modified 2S Equation and subtracting off the original Schrödinger 

2S radial solution leads to a new equation in Ὑ ὶ 
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   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

τὥ

ς

ὶὥ
ρ Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
Ὑ ὶ

‐

τὥ

ς

ὶὥ
Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
Ὑ ὶ π

Ὑ π Ὑ π 

Ὑ Њ π 

 

As before, we can construct the Baseline version of the problem by eliminating the nonlinear 

terms: 

   Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

τὥ

ς

ὶὥ
Ὑ ὶ

‐

τὥ
Ὑ ὶ π

Ὑ Њ π 

 

   
which leads to  

Ὑ ὶ Ὑ ὶ Ὡ ὧὟ ρ
ς

ρ ‐
 ȟςȟ
ὶ

ὥ
ρ ‐    

which determines the behavior of the difference solution Ὑ ὶ for large ὶ. 

In terms of Ὑ ὶ, the full statement of the problem to be solved is: 
 

Ὑ ὶ
ς

ὶ
Ὑ ὶ

ρ ‐

τὥ

ς

ὶὥ
ρ Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
Ὑ ὶ

‐

τὥ

ς

ὶὥ
Ὡ ρ

σ

τ

ὶ

ὶ

ρ

τ

ὶ

ὶ

ρ

ψ

ὶ

ὶ
Ὑ ὶ π

Ὑ π Ὑ π
ςὙ

ὥ

Ὑ Њ π 

Ὑ ὶ Ὑ ὶ  ὶ Ὠὶ ρ

 

 

With the Baseline and Difference solutions defined, we can now proceed to find a numerical 

solution to the problem. 

 

2.5.1. Numerical solution for the 2S state  

This problem can be solved numerically using the same procedure as we used for the 1S state, 

where for 2S we use 

¶ ὶ ςὥ,  

¶ ὶ  

¶ ‐
ȟ ȟ

ρȢπ  ρπȟ   
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¶ ὶ ςππ ὶ 

¶ ὶ ρφππ ὶ 

¶ Relative tolerance = ρȢπ ρπ  
 

Starting from initial values of  ‐ ρȢπ ρπ and  Ὑ ὶ πȢπππψ Ὑ ȟ it  

takes 12 outer-loop iterations to reach a value of ‐ ψȢςυτρσψχπψρπ and 

Ὑ ὶ πȢππφφρςυωρ Ὑ ȟ with ὧ πȢωωωωψχττ Ὑ ȟ  with a relative 

continuity error of χȢσρρπ  and a charge error of φȢψωτρπ .   

 

The difference wavefunctions and corresponding charge densities are shown in Figure 12. 

 
 

Figure 12:  Features of the difference wavefunction   ὙςὛὨὶȟ  and modified wavefunction 

Ὑ ὶȟ relative to the original ground state wavefunction   Ὑ ὶ.  (a) Difference 

wavefunction   ὙςὛὨὶȟ plotted over the full range computed by the numerical method.  (b) 

Difference wavefunction Ὑ ὶȟ ×ÓÖÛÛÌËɯÐÕɯÛÏÌɯÝÐÊÐÕÐÛàɯÖÍɯÛÏÌɯÛÞÖɯɁÔÈÛÊÏÐÕÎɯ×ÖÐÕÛÚɂɯÜÚÌËɯ

in step 5 of the numerical method.  (c) Difference wavefunction   ὙςὛὨὶȟ showing the 

continui ÛàɯÉÌÛÞÌÌÕɯÛÏÌɯÕÜÔÌÙÐÊÈÓɯɁÐÕÚÐËÌɂɯÈÕËɯÛÏÌɯÈÕÈÓàÛÐÊɯɁÖÜÛÚÐËÌɂɯÉÈÚÌÓÐÕÌ  ὙςὛὨὄὶȟ  

in steps 6 and 7 of the numerical method.  Note that there are two crossover points for the 

2S state.  (d) Difference wavefunction   ὙςὛὨὶ near the origin, where the nu merical 

ɁÐÕÚÐËÌɂɯÐÚɯÝÈÓÐËȮɯÈÕËɯÛÏÌɯÈÕÈÓàÛÐÊɯɁÖÜÛÚÐËÌɂɯ Ὑ ὶȟ is not valid.  The purple dotted line 

is the boundary condition Ὑ π  Ȣ  (e) Reconstructed modified charge densities 

ÚÏÖÞÐÕÎɯÛÏÌɯÙÌÚÜÓÛÐÕÎɯɁÙÖÜÕËÌËɯÛÖ×ɂȭ   Ὑ ὶ agrees with  Ὑ ὶ except near the 

origin.    

  

Difference 
Wavefunction
Ὑ ὶ 

Numerical 
άƛƴǎƛŘŜέ 

Ὑ ὶ 

Ὑ ὶ 

Numerical 
άƛƴǎƛŘŜέ 

Ὑ ὶ 

Ὑ ὶ 

Ὑ ὶ  

ήὙ ὶ 

ήὙ ὶ 

(a)  
 

(b)  
 

(c)  
 

(d)  
 

(e)  
 

ήὙ ὶ  

Ὑ ὶ 

Analytic 
άƻǳǘǎƛŘŜέ 
 

Crossover points 
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3. The Two -Body Hydrogen Problem ɬ Relativistic Case  

3.1.   Background  

The usual relativistic time -independent Dirac equation for the Hydrogen atom is  
 

ὧὴ ὴ ὴ άὧ ɰ Ὁ ὠὶ ɰ π 
 

where  ɰ is the four-component (bi-spinor) wavefunction, the non -commuting matrices are 

defined conventionally as  
 

 

π π π ρ
π π ρ π
π ρ π π
ρ π π π

,     

π π π Ὥ
π π Ὥ π
π Ὥ π π
Ὥ π π π

,      

π π ρ π
π π π ρ
ρ π π π
π ρ π π

,      

ρ π π π
π ρ π π
π π ρ π
π π π ρ

,  

 

The momentum terms are defined as usual:  ὴ Ὥᴐ ȟὴ Ὥᴐ ȟ   ὴ Ὥᴐ ȟ  E is the 

energy.  The usual assumption is that the nucleus is a non-moving point charge, which implies 

an infinitely heavy nucleus with infinitely high char ge density in zero volume, leading as before 

to the central Coulomb potential  

ὠὶ  
ή

τ“‐ὶ

ᴐ

άὥὶ
 ȟ 

which is obviously singular at the origin.   

 

Following Landau and Lifshitz, after separation of variables  

ɰὶȟ—ȟ‰
‰ὶȟ—ȟ‰

…ὶȟ—ȟ‰

Ὢὶɱ —ȟ‰

ρ  Ὣὶɱ —ȟ‰
, 

where  ὰ Ê   and  ὰ ςÊ ὰ.  The radial part of the equation is  

Ὢ ὶ
ρ ‖

ὶ
 Ὢὶ  

ρ

ᴐὧ
Ὁ άὧ ὠὶ Ὣὶ π 

Ὣ ὶ
ρ ‖

ὶ
 Ὣὶ  

ρ

ᴐὧ
Ὁ άὧ ὠὶ Ὢὶ π 

where 

 

‖ Ὦ ὰ ρ   for  Ὦ Ì  

         Ὦ ὰ                   for  Ὦ Ì    . 

The well -known energy solution is  
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Ὁ
άὧ

ρ


ὲ Ὦ
ρ
ς Ὦ

ρ
ς 

 

where the Fine Structure Constant    is defined as 


ή

τ“‐ᴐὧ
 

ρ

ρσχȢπσυωωωπχτ
 Ȣ 

Landau and Lifshitz provide the full general equations for the normalized radial wavefunction 

solutions: 

Ὢὶ
ς‗

ɜς‗ ρ

άὧ Ὁɜς‗ ὲ ρ

τάὧ
άὧ
‗

άὧ
‗

‖ẗὲȦ
ς‗ὶ Ὡ

άὧ

‗
‖ Ὂ ὲȠς‗ ρȠς‗ὶ ὲ Ὂ ρ ὲȠς‗ ρȠς‗ὶ  

Ὣὶ
ς‗

ɜς‗ ρ

άὧ Ὁɜς‗ ὲ ρ

τάὧ
άὧ
‗

άὧ
‗

‖ẗὲȦ
ς‗ὶ Ὡ

άὧ

‗
‖ Ὂ ὲȠς‗ ρȠς‗ὶ ὲ Ὂ ρ ὲȠς‗ ρȠς‗ὶ  

where  

‗
άὧ ρ

Ὁ
άὧ

ᴐὧ
 

 ‖   

ὲ ὲ ȿ‖ȿ 

and the normalization conditions are  

Ὢὶ Ὣὶ  ὶ Ὠὶ ρ       ÁÎÄ         ɰȟ   ὶ
 ÓÉÎ—Ὠ‰ Ὠ— Ὠὶ ρ 
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3.1.1. 1S½  state 

In the particular case of the 1S½  ground state where ὲ ρȟὰ π, and Ὦ  , we have  ὰᴂ ρ, 

‖ ρ,  ὲὶ π, which leads to 

Ὁ ϵ άὧ ρ   

Substituting those into the radial equations leads to the full system of equations and boundary 

conditions  

Ὢϵ ὶ  
ρ Ѝρ 

ὥ



ὶ
Ὣ ϵ ὶ π

Ὣ ϵ ὶ
ς

ὶ
 Ὣ ϵ ὶ  

ρ Ѝρ 

ὥ



ὶ
Ὢϵ ὶ π 

Ὢϵ Њ π

Ὣ ϵ Њ π

Ὢϵ ὶ Ὣ ϵ ὶ  ὶ Ὠὶ ρ

 

 

The ground state radial solutions are 

Ὢϵ ὶ
ς

ὥ ϳ
Ὡ

ςὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
 

Ὣ ϵ ὶ


ρ Ѝρ 
Ὢϵ ὶ



ς
Ὢϵ ὶ 

Note that 

ρ Ѝρ 

ɜρ ςЍρ 
ρȢππππρψ 

Because ȿὫὶȿ is smaller than ȿὪὶȿ by about a factor of  , or about 
Ȣ
 , Ὢὶ is often called 

the large component, and Ὣὶ is often called the small component.  Note that since 

Ὑ ὶ
ς

ὥ ϳ
Ὡ  

it follows that  

Ὢϵ ὶ Ὑ ὶ
ςὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
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i.e., the Dirac radial solution is related to the Schrodinger radial solution in a fairly 

straightforward way.  Bu t since the 
Ѝ

 term has a very small negative exponent, the 

Dirac radial wavefunction solution is singular at the origin (as pointed out by Darwin in 1928), 

unlike the Schrodinger radial equation, which only has a cusp at the origin, as shown i n Figure 

15(a).  This term also results in a slight shifting of the charge density toward the origin for the 

Darwin solution, compared to the Schrodinger solution, as shown in Figure 15(b).  

 

Figure 15:  (a) Electron Charge Density for the Dirac Equation (singular) and 

Schrodinger Equation (cusp only).  (b) Singular term 
Ѝ

, which is 

responsible for the slight shifting of the charge density toward the origin for the Dirac 

solution, relative to the Schrodinger solution.   This term is greater than 1 for ►
ὥπ
ς

, and 

less than 1 for ►
ὥπ
ς

.  The crossover point at ►
ὥπ
ς

 is marked with the blue dot.  

 

The full solution for the ground state, including the angular bi -spinor components, for the spin-

up and spin -down states, is given by 

ɰ ϵ

ρ

Ѝ“ὥ ϳ
Ὡ

ςὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
 

 π 
 ρ 



ρ Ѝρ 

 Ὥ Ὡ ÓÉÎ—
ὭÃÏÓ—

   

ɰ ϵ

ρ

Ѝ“ὥ ϳ
Ὡ

ςὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
 

 ρ 
 π 



ρ Ѝρ 

ὭÃÏÓ—
 Ὥ Ὡ ÓÉÎ—

   

 

 

Electron  
charge density 
Dirac Equation 

” ϵ ὶ  

Electron  
charge density 
Schrodinger Equation 

” ὶ  

(a)  
 

(b)  
 

singularity  

cusp  
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3.1.2. 2S½  state 

For the 2S½ state where ὲ ς and ὰ π, we have  Ὦ ,  ὰᴂ ρ, ‖ ρ,  ὲὶ ρ, which leads 

to 

Ὁ ϵ άὧ
ρ Ѝρ 

ς
  

Substituting this into the radial equations leads to the full system of equations and boundary 

conditions  

Ὢϵ ὶ  

ở

ờ
ρ

ρ Ѝρ 
ς

ὥ



ὶ

Ợ

ỠὫ ϵ ὶ π

Ὣ ϵ ὶ
ς

ὶ
 Ὣ ϵ ὶ  

ở

ờ
ρ

ρ Ѝρ 
ς

ὥ



ὶ

Ợ

ỠὪϵ ὶ π 

Ὢϵ Њ π

Ὣ ϵ Њ π

Ὢϵ ὶ Ὣ ϵ ὶ  ὶ Ὠὶ ρ

 

The 2S½ state radial solutions are 

Ὢϵ ὶ
ρ

ςЍςὥ
ϳ
 ς

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

Ὣ ϵ ὶ


ςρ Ѝρ 

ρ

ςЍςὥ
ϳ
 τ

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

where the  coefficients are all very nearly equal to unity:  

 ρ   πȢωωωωχσȟ 


ρ Ѝρ 

ς
  πȢωωωωωσȟ                   

ς ςЍρ 



ρ


ρȢπππππχȟ      






ρ ς ςЍρ 

ρ ςЍρ 
ρȢππππςχ ȟ 
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ς ς ςЍρ 

ρ Ѝρ  ρ ς ςЍρ 

ɜς ςЍρ 

ɜρ ςЍρ 
ρȢππππςσ 


ς ς ςЍρ 

τ
πȢωωωωωχȟ          





ρ ς ςЍρ 

ρ ςЍρ 




ρȢππππςσ ȟ 

 

3.1.3.  2P½  state 

For the 2P½ state where ὲ ς and ὰ ρ, we have  Ὦ ,  ὰᴂ π, ‖ ρ,  ὲὶ ρ, which leads to 

Ὁ ϵ άὧ
ρ Ѝρ 

ς
  

Substituting this into the radial equations leads to the  full system of equations and boundary 

conditions  

Ὢ ϵ ὶ
ς

ὶ
 Ὢ ϵ ὶ  

ở

ờ
ρ

ρ Ѝρ 
ς

ὥ



ὶ

Ợ

ỠὫ ϵ ὶ π

Ὣ ϵ ὶ  

ở

ờ
ρ

ρ Ѝρ 
ς

ὥ



ὶ

Ợ

ỠὪ ϵ ὶ π 

Ὢ ϵ Њ π

Ὣ ϵ Њ π

Ὢ ϵ ὶ Ὣ ϵ ὶ  ὶ Ὠὶ ρ

 

The 2P½ state radial solutions are 

Ὢ ϵ ὶ
ρ

ςЍφὥ
ϳ
 
σ

τ

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

Ὣ ϵ ὶ


ςρ Ѝρ 

ρ

ςЍφὥ
ϳ
 φ

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

where the  coefficients are all very nearly equal to unity:  
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ς ς ς ςЍρ  ς ς ςЍρ 

 ρ Ѝρ 
ρȢππππςχ 


σς ςЍρ  ρ ς ςЍρ  ς ς ςЍρ 

ςρ Ѝρ  ρ ςЍρ 
ρȢππππςρ 


τ

σ ς ςς ςЍρ  ς ς ςЍρ 

 
ɜς ςЍρ 

ɜρ ςЍρ 
ρȢππππςτ 


φ ρ ς ςЍρ 

ρ ςЍρ  ρ Ѝρ 
ρȢππππρψ 

 

3.2. Relativistic Problem Statement in the General Case  

We begin with t he usual relativistic time -independent Dirac equation for the Hydrogen atom:  
 

ὧὴ ὴ ὴ άὧ ɰὶȟ—ȟ‰ Ὁ ὠὶȟ—ȟ‰ ɰὶȟ—ȟ‰ π 
 

But instead of assuming a Coulomb potential for an infinitely massive nucleus, we now assume 

the potential is determined by the effective nuclear charge density from an assumed two -body 

effect, which we model as a scaled-down version of the electron charge density, scaled by the 

ratio of the masses  : 

ὠὶȟ—ȟ‰ Ὂᾀȟ—ȟ‰ Ὠᾀ  

Ὂὶȟ—ȟ‰  
ή

τ“‐

”ὶȟ—ȟ‰

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ 

”ὶȟ—ȟ‰ ή ‘ ȿ‘ὶȟ—ȟ‰ȿ 

Therefore 

ὠὶȟ—ȟ‰
ή‘

τ“‐
 
 ȿɰ‘ὶȟ—ȟ‰ȿ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ Ὠᾀ 

And  finally we have, in the relativistic case:  

ὧὴ ὴ ὴ άὧ ɰὶȟ—ȟ‰

Ὁ
ή‘

τ“‐
 
 ȿɰ‘ὶȟ—ȟ‰ȿ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ Ὠᾀɰὶȟ—ȟ‰ π 

Now we can see that this is a nonlinear integro-differential equation.  

 



53 
 

3.3.   Modified Potentials  

3.3.1. 1S½ state  

The above singular solutions arise from the Coulomb potential, which is singular at the origin, 

coming from the assumption of an unmoving point charge nucleus with infinite charge density 

at the origin.  Rather than accepting these solutions as a final result, we will treat each one as a 

first iteration.  Now that we have a first electron wavefunction corresponding to the point charge 

nucleus, we can derive an improved, non-singular, nuclear charge distribution, based on a scaled-

down and proper ly normalized version of the electron charge distribution from the first iteration 

solution above.  For example, for the 1S ground state, the normalized next-iteration nuclear 

ÊÏÈÙÎÌɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯÈÔ×ÓÐÛÜËÌɂɯÞÐÓÓɯÉÌ 

  ὔ ϵ ὶ ‘ϳɰ ϵ ‘ὶ 

‘ϳ

Ѝ“ὥ ϳ
Ὡ

ς‘ὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
 

 π 
 ρ 



ρ Ѝρ 

 Ὥ Ὡ ÓÉÎ—
ὭÃÏÓ—

 

where the proton -to-electron mass ratio ‘ ρψσφȢρυ Ȣ  Our key assumption is that the 

nuclear charge density ” ὶ ÐÚɯÛÏÌɯÚØÜÈÙÌɯÖÍɯÛÏÌɯÚÊÈÓÌËɯÕÜÊÓÌÈÙɯɁÞÈÝÌÍÜÕÊÛÐÖÕɯÈÔ×ÓÐÛÜËÌɂɯÛÐÔÌÚɯ

the unit charge ή, so  

         ” ϵ ὶ ήὔ ϵ ὶ ή‘ȿɰ ϵ ‘ὶȿ  

                         ή‘
Ὢϵ ‘ὶ Ὣ ϵ ‘ὶ

τ“
 

ή‘

“ὥ
Ὡ

ς‘ὶ

ὥ

Ѝ ρ Ѝρ 

ɜρ ςЍρ 
ρ



ρ Ѝρ 
  

where we have taken the sum of the squares of the bi-spinor components, consistent with the 

radial charge normalization condition.  Since it can be shown that  

ρ Ѝρ 

ς
ρ



ρ Ѝρ 
ρ 

we have 

         ” ϵ ὶ
ή‘σ

“ὥπ
σ
Ὡ
ς‘ὶ
ὥπ
ς‘ὶ

ὥπ

ς ρ ρς ς

ɜρ ςЍρ ς
 

The first step will be to determine the new potential corresponding to this new, smeared -out 

nuclear charge distribution.  We will address the particular case of the ground state first, before 

addressing the general case.    

        Recall that the potential energy V(r) at distance r from the nucleus is defined as the integral 

of the force required to move a test charge from infinity to r: 

ὠὶ Ὂᾀ Ὠᾀ Ȣ 

For a point charge nucleus, we have Ὂὶ ής

τ“‐πὶ
ς , so it is tri vial to show that this leads to the 

Coulomb potential.  For a general spherical charge distribution ”ὶ, the calculation is more 
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involved.  Without loss of generality, we can place the test charge on the z axis at position  ὃ

ὶὃȟπȟπ.  The first step is to find the force acting on the test charge at ᾀ from an infinitesimal 

element of the charge distribution ”ὶ located at ὄ ὶȟ—ȟ‰ Ȣ      

 

 

 

 

 

 

 

 

 

 

Figure 16:  Computing the force on a test charge at ὃ due to a spherically symmetric  

charge distribution ”ὶ. 
 

In this case, we have 

Ὂὶ
ή

τ“‐

”ὶ

ȿὃὄȿ
ÃÏÓ Ὠὠέὰ 

i.e., the usual ρ
ὶ

 force law, where the ÃÏÓ term is included because we need only include the 

component in the -z direction, since the perpendicular component of the force will be cancelled 

by the charge element on the other side of the z axis at ‰ “ .  Eliminating ÃÏÓ and stating the 

volume element dVol explicitly, we have  

Ὂὶ
ή

τ“‐

”ὶ

ȿὃὄȿ

ὶ ὶÃÏÓ—

ȿὃὄȿ
ὶ ÓÉÎ— Ὠ‰ Ὠ— Ὠὶ Ȣ 

The distance between the test charge and the small charge element is 

ȿὃὄȿ ὶ ςὶὶÃÏÓ— ὶ   

Substituting ” ϵ ὶ and ȿὃὄȿ into the expression for Ὂὶ  and performing the integration in 

‰  gives 

Ὂ ϵ ὶ
ή‘

ς“‐ὥ

ς

ɜρ ςЍρ 

Ὡ  
ς‘ὶ
ὥ

ὶ ὶÃÏÓ—

ὶ ςὶὶÃÏÓ— ὶ
ὶ ÓÉÎ— Ὠ— Ὠὶ Ȣ 

This integral can be done in closed form (by Mathematica), leading to 

Ὂ ϵ ὶ
ή

τ“‐ὶ
ρ
ɜρ ςρ ȟ 

ς‘ὶ
ὥ

ɜρ ςЍρ 
     

ᾀ 

ὄ ὶȟ—ȟ‰  

— 

 

”ὶ 

ὃ ὶȟπȟπ 
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i.e., the usual ρ
ὶ

 force law, with a correction that has an effect only near the origin.  

ɜρ ςρ ȟ  is the Upper Incomplete Gamma Function .  Performing the final integral 

to find the modified potential energy for the 1S state:  

ὠ ϵ ὶ Ὂ ϵ ὶ Ὠὶ  

leads to 

ὠ ϵ ὶ
ή

τ“‐ὶ

ở

ỞỞ
ờ
ρ

ς‘ὶ
ὥ

Ѝ

Ὡ ςЍρ 
ς‘ὶ
ὥ
 % ςЍρ  ȟ

ς‘ὶ
ὥ

  

Ѝρ  ɜρ ςЍρ 

Ợ

ỡỡ
Ỡ

 

where Ὁὲȟᾀ is the Exponential Integral E function .  As before, the modified potential energy 

ὠ ϵ ὶ looks like the usual Coulomb potential energy ὠὶ with a correction that has an effect 

only near the origin, as shown in Figure 17(b). 

 
Figure 17:  First iteration 1S ground state radial wavefunctions and potentials 

(wavefunctions on arbitrary unit scales to allow them to be plotted together; potentials are 

scaled relative to ὠ π   ὠ ϵ π).  (a) Large spatial scale, showing the 

exponentially decaying electron charge density and the steep, singular Co ulomb potential.  

(b)  Smaller spatial scale, showing the scaled -down nucleus charge density, and the 

corresponding modified potential ὠ ϵ ὶ, which is not singular at the origin.   

 

4ÚÐÕÎɯ+ɀ'Ġ×ÐÛÈÓɀÚɯ1ÜÓÌȮɯÐÛɯÊÈÕɯÉÌɯÚÏÖÞÕɯÛÏÈÛɯÛÏÌɯÝÈÓÜÌɯÖÍ  ὠ ϵ ὶ at ὶ π is  

ὠ ϵ π
ή‘

τ“‐ὥ

ρ

Ѝρ 
 

                  
ή

τ“‐ὶ

ρ

Ѝρ 
  Ȣ 

 

Electron  
charge density 
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” ϵ ὶ  
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V(r)  Coulomb 

Potential 
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Modified 
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ὠ ϵ ὶ 

(a)  
 

(b)  

Nucleus  
charge density 
” ϵ ὶ  
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At the scale shown in Figure 18(a), the charge densities and modified potentials for the Dirac 

solution look identical to those for the Schrodinger solution (see Figure 2).  A finer comparison of 

the modified potentials is given in Figure 18(b).   

 
Figure 18:  (a) Comparison of modified potentials for Dirac and Schrodinger case.  On this scale, the two 

modified potentials are indistinguishable.  Potentials are scaled relative to ὠ π  .  (b)  

Difference between Dirac and Schrodinger modified pote ntials.  The worst -case relative deviation 

between the two potentials occurs at the origin at a value of   ρ
Ѝ

πȢππππςφφ.   

 

3.3.2. 2S½ state 

For the 2S½ state, the radial wavefunction solutions are 

Ὢϵ ὶ
ρ

ςЍςὥ
ϳ
 ς

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

Ὣ ϵ ὶ


ςρ Ѝρ 

ρ

ςЍςὥ
ϳ
 τ

ὶ

ὥ
 Ὡ

ὶ

ὥ

Ѝ

 

so the first-iteration nuclear charge density  ” ϵ ὶ will be  

         ” ϵ ὶ ή‘
Ὢϵ ‘ὶ Ὣ ϵ ‘ὶ

τ“
  

                  
ή‘

σς“ὥ
Ὡ

‘ὶ

ὥ

Ѝ

ς
‘ὶ

ὥ

τ
‘ὶ
ὥ

ςρ Ѝρ 
  

Substituting ” ϵ ὶ into the expression for Ὂᾀ  and performing the integration in ‰ gives 

Ὂ ϵ ὶ
ή‘

φτ“‐ὥ
 

Modified 
Potential 
Schrodinger
ὠ ὶ 

Coulomb 
Potential 
V(r)  

Modified 
Potential 
Dirac 
ὠ ϵ ὶ 

(a)  
 

(b)  
 

ὠ ϵ ὶ ὠ ὶ 
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Ὡ
‘ὶ
ὥ

ς
‘ὶ
ὥ

 τ
‘ὶ
ὥ

ςρ Ѝρ 
ὶ ὶÃÏÓ—

ὶ ςὶὶÃÏÓ— ὶ
ὶ ÓÉÎ— Ὠ— Ὠὶ Ȣ 

This integral can be done in closed form (by Mathematica), leading to 

Ὂ ϵ ὶ
ή

τ“‐ὶ
ρ


ς
ɜρ ςρ ȟ 

‘ὶ

ὥ



ς
ɜς ςρ ȟ 

‘ὶ

ὥ



ψ
ɜσ ςρ ȟ 

‘ὶ

ὥ
     

where 

 


ψ
ρȢπππππχ                    



ρφ
ρȢππππςσ  

which leads to the modified potential energy for the 2S½ state  

ὠ ϵ ὶ
ή

τ“‐ὶ
ρ



ς

‘ὶ

τὥ
ɜρ ςρ ȟ 

‘ὶ

ὥ



ς

‘ ὶ

φὥ
ɜς ς ρ ȟ 
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ɜσ ς ρ ȟ 

‘ὶ

ὥ

Ὡ
‘ὶ

ὥ
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φ

‘ὶ

ὥ



σς
 
‘ὶ

ὥ
     

where 

  
σ τ ς τЍρ  

ψ ρ ςЍρ 
ρȢππππσρ 


 ψ τ ψЍρ  

ρφ
 ρȢππππτσ  

 
ρ


 ɜρ ςρ 

ς

σ
ɜς ςρ 



ψ
ɜσ ςρ   ρȢππππσσȢ 


ς ς ρςρ Ѝρ   ρσ χЍρ 

Ѝρ  ρ Ѝρ   σ ς σЍρ 
ρȢππππφχ 


σ  ςρ   ς  ς ψρ   τ  τ σ ς

ς ρ  σ ς σ
  ρȢππππχπ 


  σρ   σ ς τ ρςρ   χ ς  ρω ρσ
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 ὠ ϵ π
ή‘

ρφ“‐ὥ
 

ή

τ“‐ τὶ



τ
ὠ πȢ 

At the scale shown in Figure 19(a), the charge densities and modified potentials for the Dirac 

solution  ὠ ϵ ὶ look identical to those for the Schrodinger solution (see Figure 3).  A finer 

comparison of the modified  potentials is given in Figure 19(b).   

 
Figure 19:  (a) Comparison of modified potentials for Dirac  ὠ ϵ ὶ  and Schrodinger 

 ὠ ὶ case.  On this scale, the two modified potentials are indistinguishable.  Potentials are 

scaled relative to ὠ π  .  The unmodified Coulomb potential  ὠὶ is shown for 

reference.  (b)  Difference between Dirac and Schrodinger modified pote ntials.  The worst -

case relative deviation between the two potentials occurs at the origin at a value of   ρ
ρυ
τ

πȢπππππψρ.   

 

 

 

 

3.4.   Energy and Electron Wavefunction for the 1S ½ state 

For the 1S½ state, the next step is to compute the new energy and electron wavefunction 

corresponding to this modified Coulomb potential   ὠρὛϵ ὶ.  We will first set up the problem, 

and then show the various methods we have used to solve the problem. 

        The energy level of the unmodified 1S½  ground state is 

Ὁ ϵ άὧ ρ  Ȣ 

Note that the relativistic energy includes the rest mass άὧ which  must be subtracted away 

before it can be compared to the non-relativistic energy.  Because we have made a modification to 

the potential near the origin, we should expect that  there should be a small change in the energy 

for a self-consistent wavefunction solution.  Let us define the modified energy Ὁ ϵ  as a tiny 

fractional change to the original energy with the rest mass removed: 

Coulomb 
Potential 
V(r)  

ὠ ὶ 

ὠ ϵ ὶ 

(a)  
 

(b)  
 

ὠ ϵ ὶ ὠ ὶ 
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Ὁ ϵ Ὁ ϵ άὧ ρ ‐ ϵ άὧ 

                         άὧ ρ ρ ρ  ρ ‐ ϵ  

                         άὧ ρ  ‐ ϵ ρ ρ   

where ‐ ϵ is a small, dimensionless quantity.  With this definition, we can expect an 

approximate value of ‐ ϵ ȟ ȟ
  as in the non-relativis tic case. 

        Substituting  the previous expressions for Ὁ ϵ  and ὠ ϵ ὶ leads to the Modified Ground 

State Equation (along with its boundary conditions and the charge normalization condition):  

 

Ὢϵ ὶ  
ρ Ѝρ  ‐ ϵ ρ Ѝρ 

ὥ



ὶ
ὃ ϵ ὶ Ὣ ϵ ὶ π

Ὣ ϵ ὶ
ς

ὶ
 Ὣ ϵ ὶ  

ρ Ѝρ  ‐ ϵ ρ Ѝρ 

ὥ



ὶ
ὃ ϵ ὶ Ὢϵ ὶ π

ὃ ϵ ὶ
ὠ ϵ ὶ

ὠὶ

ở

Ở
ờ
ρ

ς‘ὶ

ὥπ

ρ ςЍρς

Ὡ

ς‘ὶ

ὥπ ςЍρ ς
ς‘ὶ

ὥπ
 % ςЍρ ς ȟ

ς‘ὶ

ὥπ
  

Ѝρ ς ɜρ ςЍρ ς

Ợ

ỡ
Ỡ

Ὢϵ Њ π

Ὣ ϵ Њ π

Ὢϵ ὶ Ὣ ϵ ὶ  ὶ Ὠὶ ρ

 

 

 

And the challenge is to solve for the fractional energy change ‐ ϵ and the wavefunctions 

Ὢϵ ὶ  and Ὣ ϵ ὶȢ 
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3.4.1. Numerical solution for the 1S ½ state 

We were not able to find a closed-form Baseline solution, so we must use the more conventional 

two -sided shooting method, adapted to the specific needs of the Relativistic case, with the 

coupled equations for Ὢϵ ὶ  and Ὣ ϵ ὶ, similar to Silbar et al. (2010).  The solution will 

be determined by ‐ ϵ and the two additional free parameters  

                 ÇÆÒÁÔÉÏὶάὭὲ 
ὫρὛϵά

ὶάὭὲ

ὪρὛϵά
ὶάὭὲ  

 ,           ÇÆÒÁÔÉÏὶάὥὼ 
ὫρὛϵά

ὶάὥὼ

ὪρὛϵά
ὶάὥὼ  

 

For the original Dirac solution,  

ÇÆÒÁÔÉÏὶ  ÇÆÒÁÔÉÏὶ


ρ Ѝρ 
 

Early experiments with the numerical solution of the Modified Ground State equations led 

directly to  

ÇÆÒÁÔÉÏὶ  π ȟ                          ÇÆÒÁÔÉÏὶ


ρ Ѝρ 
 

as promising initial values, subject to joint optimization along with ‐ ϵ.  This problem can be 

solved numerically using the following procedure:  

12. Goal of the procedure :  The procedure is designed to solve for ‐ ϵ, ÇÆÒÁÔÉÏὶ ȟ  and 

ÇÆÒÁÔÉÏὶ . 

13. Initialization:   Choose an initial value for ‐ρȡ   We used ρȢπ ρπ.  Choose initial 

values  ÇÆÒÁÔÉÏὶ  π ȟÇÆÒÁÔÉÏὶ
Ѝ

 , where we defined ὶ σπὶ and 

ὶ .  We will also need two midpoints for continuity matching:  we used  

ὶ ρρὶ and ὶ τπὶȢ 

14. Ɂ.ÜÛÞÈÙËɂ ÈÕËɯɁ(ÕÞÈÙËɂɯshooting integration s:  Define the interval in which to perform 

the outward shooting -method integration for ὶ running from ὶ  to ὶ .  Define the 

interval in which to perform the inward shooting -method integration for ὶ running from 

ὶ  to ὶ .  Note that the two integrations overlap on the interval ὶ  to ὶ Ȣ The 

integrations can be done directly in Mathematica by NDSolve .  Each integration will 

produce trial wavefunctions Ὢϵ ὶ  and Ὣ ϵ ὶȢ 

15. Continuity and Charge Normalization Condition:   6ÌɯÕÖÞɯÏÈÝÌɯÈɯÛÙÐÈÓɯɁÖÜÛÞÈÙËɂɯÈÕËɯ

ɁÐÕÞÈÙËɂɯÕÜÔÌÙÐÊÈÓɯÐÕÛÌÎÙÈÛÐÖÕÚɯËÖÕÌȭɯɯ6ÌɯÚÊÈÓÌɯÛÏÌɯɁÐÕÞÈÙËɂɯÚÖÓÜÛÐÖÕɯÚÖɯÛÏÈÛɯÛÏÌɯ

ɁÐÕÞÈÙËɂɯὪϵ ὶ  ÈÎÙÌÌÚɯÞÐÛÏɯÛÏÌɯɁÖÜÛÞÈÙËɂɯὪϵ ὶȢ We then numerically compute 

ÛÏÌɯÊÏÈÙÎÌɯÕÖÙÔÈÓÐáÈÛÐÖÕɯÐÕÛÌÎÙÈÓȮɯÜÚÐÕÎɯÛÏÌɯɁÖÜÛÞÈÙËɂɯÚÖÓÜÛÐÖÕɯÍÙÖÔɯὶ  to ὶ ȟ and 

ÛÏÌɯɁÐÕÞÈÙËɂɯÚÖÓÜÛÐÖÕɯÍÙÖÔɯὶ  to ὶ ȟ and then scale the composite solution to 

normalize the charge.  At this point, we have a two -part normalized solution where the 

ɁÐÕÞÈÙËɂɯ ÈÕËɯ ɁÖÜÛÞÈÙËɂɯ ×ÈÙÛÚɯ ÔÈÛÊh at Ὢϵ ὶ  ȟ  but may not match at 

Ὣ ϵ ὶ  ȟὪϵ ὶ  ȟ  and Ὣ ϵ ὶ  Ȣ  To match these three additional 

conditions, we may need to adjust ‐ ϵ, ÇÆÒÁÔÉÏὶ ȟ  and ÇÆÒÁÔÉÏὶ Ȣ    

16. Inner Loop Iteration Condition:   We defined the difference solutions as the deviation 

between the modified solutions and the corresponding original Dirac solution:  
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 Ὢϵ ὶ  Ὢϵ ὶ  Ὢϵ ὶ 

 Ὣ ϵ ὶ  Ὣ ϵ ὶ  Ὣ ϵ ὶ 

 and the Error as 

        %ÒÒÏÒ Ὣ ϵ ὶ   Ὣ ϵ ὶ  

  Ὢϵ ὶ   Ὢϵ ὶ  

 Ὣ ϵ ὶ   Ὣ ϵ ὶ   

ÞÏÐÊÏɯÞÐÓÓɯÝÈÕÐÚÏɯÞÏÌÕɯÛÏÌɯÊÖÕÛÐÕÜÐÛàɯÊÖÕËÐÛÐÖÕɯÐÚɯÔÌÛȮɯÐȭÌȭȮɯÛÏÌɯɁÖÜÛÞÈÙËɂɯÈÕËɯɁÐÕÞÈÙËɂɯ

integrations agree, in both the f and g terms, at both points ὶ   and ὶ  .  Holding 

ÇÆÒÁÔÉÏὶ π and ÇÆÒÁÔÉÏὶ ρ constant, we ÜÚÌËɯ,ÈÛÏÌÔÈÛÐÊÈɀÚɯNDSolve  to find 

the minimum value of Error as a function of  ‐ ϵ.  We found the Minimum Error of σȢσσ

ρπ  at ‐ ϵ ρȢρψτχρφπψτρπȢ  Since the value of the Minimum Error is so close 

to zero, we concluded that the initial values of ÇÆÒÁÔÉÏὶ  and ÇÆÒÁÔÉÏὶ   needed no 

further modification to find a completely self -consistent solution.  We note also that this 

value of ‐ ϵ is very close to the value found in the non -relativistic case of ‐

ρȢρψτσπχρπ. 

 

The original Dirac electron charge density is given by 

         ” ϵ ὶ ή
Ὢϵ ὶ Ὣ ϵ ὶ

τ“
 Ȣ 

The modified electron charge density is given by  

         ” ϵ ὶ ή
Ὢϵ ὶ Ὣ ϵ ὶ

τ“
 Ȣ 

The difference electron charge density is given by 

         ” ϵ ὶ ” ϵ ὶ ” ϵ ὶ Ȣ 

These charge densities are shown in Figure 20, illustrating that, relative to the original Dirac 

Solution, charge is displaced outward from the origin as in the non -relativistic case, and the 

singularity in the Original Dirac charge density is eliminated, in favor of a  well -behaved 

ɁÙÖÜÕËÌËɯÛÖ×ɂȭ 
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Figure 20:  Continuity conditions for the 1S ½ numerical solution.   ȹÈȺɯɁ.ÜÛÞÈÙËɂɯȹÉÓÜÌȺɯÈÕËɯ

Ɂ(ÕÞÈÙËɂɯȹÎÙÌÌÕȺɯ Ὢϵ ὶ difference solutions, matching at ὶ  and ὶ ȟ which results 

in them matching everywhere . ȹÉȺɯ Ɂ.ÜÛÞÈÙËɂɯ ȹÉÓÜÌȺɯ ÈÕËɯ Ɂ(ÕÞÈÙËɂɯ ȹÎÙÌÌÕȺɯ Ὣ ϵ ὶ 

difference s olutions, matching at ὶ  and ὶ Ȣ   (c)  Corresponding Electron charge 

density differences from the original Dirac Solution, showing that charge lost near the 

origin is displaced outward from the origin, as in the non -relativistic case.  (d)  Detailed 

view of the Electron charge density deviations from the original Dirac Solution near the 

origin. (e)  Comparison of the Original Dirac Electron charge density, which has a 

singularity at the origin, to the modified charge density, which has the ex ×ÌÊÛÌËɯɁÙÖÜÕËÌËɯ

ÛÖ×ɂɯÞÐÛÏɯÕÖɯÚÐÕÎÜÓÈÙÐÛàȭɯ 

 

Now that we have seen the numerical solution for the modified 1S½ state, we can use it to guide 

us to a good closed-form analytic approximation .   

 

3.5.   Energy and Electron Wavefunction for the 2S½ state  

For the 2S½ state, the next step is to compute the new energy and electron wavefunction 

corresponding to this modified Coulomb potential   ὠςὛϵ ὶ.  We will first set up the problem, 

and then show the various methods we have used to solve the problem. 

        The energy level of the unmodified 2S½  ground state is 

Ὁ ϵ άὧ
ρ Ѝρ 

ς
άὧ  

Note that the relativistic energy includes the rest mass άὧ which  must be subtracted away 

before it can be compared to the non-relativistic energy.  Because we have made a modification to 

Ὢ ϵ ὶ   

” ϵ ὶ 

” ϵ ὶ 

 

(a)  
 

(b)  
 

(c)  
 

(d)  
 

(e)  
 

Ὢ ϵ ὶ   

Ὣ ϵ ὶ   

Ὣ ϵ ὶ   

” ϵ ὶ 

 
” ϵ ὶ 
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the potential near the origin, we should expect that there should be a small change in the energy 

for a self-consistent wavefunction solution.  Let us define the modified energy Ὁ ϵ  as a tiny 

fractional change to the original energy with the rest mass removed: 

Ὁ ϵ Ὁ ϵ άὧ ρ ‐ ϵ άὧ                

                            άὧ

ở

ờρ ρ
ρ Ѝρ 

ς
ρ ‐ ϵ

Ợ

Ỡ 

                                         άὧ

ở

ờ
ρ Ѝρ 

ς
‐ ϵ ρ

ρ Ѝρ 

ς

Ợ

Ỡ 

άὧ  ‐ ϵ ρ               

where ‐ ϵ is a small, dimensionless quantity.  With this definition, we can expect an 

approximate value of ‐ ϵ ȟ ȟ
  as in the non-relativistic case. 

        Substituting  the previous expressions for Ὁ ϵ  and ὠ ϵ ὶ leads to the Modified Ground 

State Equation (along with its boundary conditions and the charge normalization condition):  
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ὶ
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Ὢϵ Њ π

Ὣ ϵ Њ π

Ὢϵ ὶ Ὣ ϵ ὶ  ὶ Ὠὶ ρ

 

 

 

and the challenge is to solve for the fractional energy change ‐ ϵ and the wavefunctions  

Ὢϵ ὶ  and Ὣ ϵ ὶȢ 

 






























