Summary of Two -Body Lamb Shift Study

Lloyd Watts

Decembev, 2014

In this study, we explored an alternate proposal to explain the Lamb Shift, in the hope of providing
a formulation which would eliminate the singularity of the Dirac wavefunctions, and avoid the
renormalization and divergent integrals of the usual Quantum Electrodynamics approach. Following a
suggestion by Kalitvianski (2008), the Hydrogen atom is treated as a two-body problem, in which t he
nucleus (proton) and electron move around a common center of mass. Since the proton is~1836times more
massive than the electron, thex UOUOOwi OUOUWEWUOEOOQW?ET EUT T WEOOUE?» wEUOL
scaled down version of the electron charge density, scaled down approximately by the proton -to-electron
mass ratio. We can compute the modified Coulomb potential corresponding to th is effective nuclear charge
density, and solve the two-body problem iteratively , in the spirit of the Hartree-Fock SelfConsistent Field
approach. We find that the singularities of the Coulomb potential and original Dirac wavefunctions are
indeed eliminated; all potentials and wavefunctions become finite in the first iteration , and small positive
energy shifts of approxim ately the right order of magnitude (a few GHz) are found for the 1S and 2S states
of both Hydrogen and Deuterium. However, the detailed predictions differ significantly from modern
measurements, and the dependence on the principle qguantum number & and the proton-to-electron mass
ratio * does not match the trends in the data, or in the accepted QED theory, which does agree with
experiment. In addition, all known relativistic two -body derivations (Barker and Glover (1955), Eides,
Grotch and Shelyuto (2007) produce recoil and finite nuclear size effects that are much smaller than the
Lamb Shift. We conclude that the proposal is not viable, and that if there is an opportunity to find a new
formulation of Lamb Shift theory that avoids the divergences and renormalization of Quantum
Electrodynamics, it should focus on mechanisms associated with charge smearing of the electron, not the
nucleus.



Summary of Re sults
The modified potentials for the 1S and 2S states are

W i — P Q p — -— = 0 =

where ‘ is the proton -to-electron mass ratio, and @ is the Bohr radius. These potentials are
plotted in Figure 1, with comparisons to the conventional Coulomb potential .
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Figure 1: Modified potentials for 1S and 2S states, compared to conventional Coulomb

potential (dashed line). Potentials are scaled relative to @ Tt —_

The first-order energy shifts (expressed as frequencies)can be computed easily using
perturbation theory:
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From this, we infer the leading term in the perturbative expansion for the energy shift (valid at
least for small €):
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Using numerical methods (two -sided shooting), we have computed the energies, in good
agreement to the above perturbative expressions, and alsowavefunctions and corresponding
charge densities, as shown Figure 2. In these plots, it can be seen that the cusps and singularities
of the original solutions are indeed eliminat ed in the modified formulation.
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Figure 2: Modified electron charge densities for 1S and 2S states (blue lines), compared to
conventional electron charge densities (red lines). Solid lines are the relativistic charge
densities, dotted lines are the non -relativistic charge densities . All curves are scaled relative

to the non-relativistic density at the origin.

solution are eliminated.

The cusps and singularities of the original

So, qualitatively, the model achieves some of its goals: itproduces small positive energy shifts,
and eliminates the cusps and singularities in the wavefunctions, and involves no singular

mathematics or renormalization.

Unfortunately, the quantitative predictions of the model do not agree with experiment, as shown
in Figure 3, in which we consider the 1S and 2S statesfor both Hydroden (H) and Deuterium (D ):

Measured Predicted
Energy Energy

Shift (GHz) | Shift (GHz)
1SY (H) 8.17287 3.901
2SY% (H) 1.05785 6.827
1SY (D) 8.18381 0.975
2SY% (D) 1.09936 1.707
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Figure 3: Comparison of prediction and experiment for the 1S and 2S states of both
Hydrogen and Deuterium.
and Karshenboim (2005).

Data taken from Weitz (1995), Wijngaarden and Drake (1977),

In the experimental data, the Hydrogen and Deuterium shifts are extremely close to each other

(very weak dependence on* ), whereas the model predicts a strong— dependence. And in the



experimental data we see a strong— (decreasing) dependence, whereas the model predicts a
moderate (increasing) dependence ong.

The conventional QED theory (Eides, Grotch and Shelyuto, 2007) correctly predicts the
dependenciesseen in the datg as it was designed to do:

Conventional QED prediction o a P O | p ‘
(agrees with experiment) Yy 0 1 C _E_ : o |
Proposed prediction o G W p o
(does not agree with experiment) Yy Q C : |

Now that we have worked the proposal all the way to its conclusion, we can see why itdoes not

succecedd ww ( Uwi axOU0T 1 UP4al UWEWOEUTT w?OUEOI EUWET EUTT wUC
term), much larger than is derived from existing two -body relativistic treatments such as Barker

and Glover (1955) and further modern refinements desaibed in Eides, Grotch, and Shelyuto

(2007). This gives the model its unreasonably large dependence on , so it fails the Deuterium

test. And since theproposed charge smearing effectdepends on the state of the electron, it grows

with the increasing radius of the electron wavefunction, i.e. the proposed energy shift increases

with €, when the experimental data clearly shows a strong — (decreasing) dependence

For all of the aboveUl EUOOUOwWPUwhUwWwOOPWEOI EUwWwUT EVwEOawW?ET EUT
the effective potential, must come from an effect of smearing of the electron, not the nucleus.
From Eides, Grotch, and Shelyuto (2007)

We would like to emphasize that the qu antum mechanical (recoil and finite nuclear size)
effects alone do not predict anything of the scale of the experimentally observed Lamb
shift, which is thus essentially a quantum electrodynamic (field -theoretical) effect.
According to QED an electron continuously emits and absorbs virtual photons and as a
result its electric charge is spread over a finite volume instead of being pointlike.

So, going forward, if there is an opportunity to find some reformulation of Lamb Shift theory that
can avoid the divergencesand renormalization of Quantum Electrodynamics, it should focus on
a mechanism associated withcharge spreading of the electron, not the nucleus.



References

1.

w

l EUOT UOw638 B OWEOCEW&OOYI UOw %6 -Partle Wave BqlakodsDd@d Ow Ol w1
Eides, M., Grotch, H., and Shelyuto, V., Theory of Light Hydrogenic Bound Stat&pringer, 2007.
*EOPUYDPEOUODPOWS 6 Ow? U K iakiv.ondalns#0806.0685, 20a8- UE O1 UU> Ow
*EUUT T OEOPOOwW26&380w?2/ Ul EPUPOOwWwxT aUPEUWOI wubOx Ol
61 PUaOw, 6 Owl U wedsOrément of/ the 118 HroubdsGtas IGmb shift in atomic

T AaEUOT I OWEOEWET UUI UPUOwWEa wi Ul gUI OEAawWwEOOXxEUDUOO
1995 pp. 26642681.

Wijngaarden, A.V. and Drake, G,? # 1 UUT UDP U Ow+ E O E wU-taddtidh avsbtiepyd U1 OET B
measUUIT Ol OUU~> Ow/ T AaUPEEOQw11 YBTpp.u36013A OO0 U O whi Ow- O w

200 WEEUI EwOOwUT 1 wEEOYIT wE OE Gundy BipOacH toauldOFhidwWas1 Ew 0T E
wrong. But along the way, | developed some interesting mathematical techniques that some

people may find interesting. So, the remaining paper contains the full flawed write -up, written

before | had understood that the approach and conclusion was flawed.


http://arxiv.org/abs/0806.2635

Lamb Shift based on Two-Body Quantum Mechanics
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The Dirac Equation (1928) predicted the energy levels of atomic Hydrogen to the level of fine
structure splitting, but the wavefunctions were singular at the origin and the 2S% and 2P%z energy levels
were predicted to be degenerate. In 1947, Lamb and Rethdord measured a small energy difference
between the 2S% and 2P%: levels, known as the Lamb Shift. Hans Bethe in 1947 proposed an explanation
for this shift based on electron self-energy, in which the electron is continually emitting and absorbing
virtual photons, such that the charge of the electron is spread over a small volume. This method results in
EPDYI UT 1 O0w POUT UOI EPEUI w EEOCEUOCEUDPOOUW pbOi DPOPUDPI UAwW bi E
corresponding infinite quantities for a free electron, and re -scaling the mass. Richard Feynman and others
in 1948k Ywl RUIT OET Ew! 1 UT 1 zUwOI Ul OEWUOWEEEOUOUwWIiI OUwUI OEUD Y/
Quantum Electrodynamics (QED). Neither Dirac nor Feynman were satisfied that renormalization was a
mathematically legitimate process, but no other explanation for the Lamb Shift has been found to be
successful, and renormalization has been largely accepted as a valid and necessary part of the theory,
largely based on the Renormalization Group work of Ken Wilso Owb OwUT T whiNA Yz U8 ww

In this paper, we develop an alternate proposal to explain the Lamb Shift, which eliminates the
singularity of the Dirac wavefunctions, and does not involve any renormalization or divergent integrals at
any point in the calculations. Following a suggestion by Kalitvianski (2008), the Hydrogen atom is treated
as a two-body problem, in which the nucleus (proton) and electron move around a common center of mass.
Since the proton is 1836.15 times more massive than the electron, the proton® U QU wE wUOEOOW? ET EUT |
around the center of mass that is a scaled down version of the electron charge density, scaled down
approximately by the proton -to-electron mass ratio. We can compute the modified Coulomb potential
corresponding to this effective nuclear charge density, and solve the two-body problem iteratively. We
find that the singularities of the Coulomb potential and original Dirac wavefunctions are eliminated; all
potentials and wavefunctions become finite in the first iteration. We have calculated the Lamb Shift and
1S2S transition energies, and we find the correct sign and magnitude of shifts, provided that the scaling of
the effective nuclear charge density is permitted to have a moderate dependence on the quantum state of
the atom. This is consistent with the relativistic two -body theory of Todorov (1971) in which a two -body
relativistic system can be reduced to an equivalent one-body relativistic system with an energy -dependent
quasi-potential.

Modern QED calculations (Mohr/CODATA 2010) are extremely sophisticated, and certainly take
relativistic two -body considerations into account, based on Barker and Glover (1955) and Sapirstein and
Yennie (1990). Based on the assumption of two interacting Dirac particles, they find that two-body effects
are too small to account for Lamb Shift, and therefore the QED/self-energy effects are needed to explain the
Lamb Shift. However, their analysis is based on two interacting Dirac particles, which does not strictly
describe the Hydrogen electron/proton system ¢ a proton is not the same as a massive positron. In 2014, it
appears that a relativistic two -body theory that is strictly applicable to Hydrogen does not yet exist,
although progress is being made (Jallouli and Szadjian 1996; Buonanno 2000Crater 2014). Our work is
built on the hypothesis that such a theory, when it is developed, will rigorously produce state -dependent
guasi-potentials of the form that we have derived from our assumed informal two -body interaction.
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1. Introduction

In 1928, Paul Dirac formulated his equation for the wavefunction of the electron, derived from
first principles from the Energy -Momentum Relation of Special Relativity. Using his equation,
he found closed-form solutions for the energy values and wavefunctions of the stationary states
of the Hydrogen atom, under the assumption of a central Coulomb potential, which effectively
assumesa non-moving, point charge in the nucleus of the atom. This formulation had many
dramatic successes:

1 the prediction of the transition energies matched the spectroscopic data to the
experimental accuracy available in 192800 WOOUEEQa wx Ul EPEUDOT wUT T wKk 6|
the n=2 energy level into the ¢0- and ¢0- energy levels, about 1/200,000 the size of the
9 the bi-spinor solution provided a firm theoretical foundation for electron s pin which, up
to that time, had been explained only empirically by Wolfgang Pauli in 1927, matching
the 1925 experimental data of Uhlenbeck and Goudsmit;
9 and his solution predicted the existence of anti-particles, notably the positron, which was
subsequently discovered by Carl Anderson in 1932.

However, in 1928, Charles G. Darwin observed that the radial solutions to the Dirac
formulation of the Hydrogen atom were singular at the origin , including even the ground state
p Y. But since the integals associated with computing the spectral energies were convergent, and
the spectral energies were a good match for the available data, and there were so many other
successes, this problem was considered minor at the time. Darwin wrote,

We do not know enough perhaps about the essential rules for proper functions to pay much
attention to this defect. Moreover, it may well be that it would disappear if we could solve the
problem of two bodies properly instead of treating the nucleus as an abstract center of force.

One of the predictions from the Dirac formulation of the Hydrogen atom was that the ¢"¥
and ¢0- states should be degenerate, i.e., they should have the same energy levels, since they
both have n=2and j=20 WE O E wb O w# b orEthezeteugy 1€v81ep@rie Oy onnandj. In
1947, Willis Lamb and Robert Retherford made precision measurements of the energy separation
between the ¢"Y¥ and ¢0- levels, and found it to be about 4.37%; 1 Breported at the time as about
1000 MHz), about 1/10 the size of the fine splitting, or about 1/2,000,000 the size of the LymasY" w
transition energy, which is indeed very small, but not zero as predicted by the Dirac formulation.

So, by 1947, thee was clearexperimental evidence that, despite its many successes, the Dirac
formulation of the Hydrogen atom was incomplete or incorrect in some way ¢ something new
was needed to account for the tiny Lamb shift. And it was well -known since 1928 that the radial
basis functions were singular at the origin, giving a clear theoretical indication that there was
some defect in the formulation, with speculation that this defect may be related to the assumption
of a non-moving, point charge in the nucleus of th e Hydrogen atom, i.e., not dealing properly
with the true, two -body nature of the problem, as pointed out by Darwin in 1928.

8



In 1947, Hans Bethe proposed a theory for the Lamb Shift, based on a suggestion by Julian
Schwinger, Victor Weisskopf, and Robert Oppenheimer, that the energy shift could be caused by

wrote,

This shift comes out infinite in all existing theories, and has therefore always b een ignored.
However, it is possible to identify the most strongly (linearly) divergent term in the level shift
with an electromagnetic mass effect which must exist for a bound as well as for a free electron.
This effect should properly be regarded as already included in the observed mass of the
electron, and we must therefore subtract from the theoretical expression, the corresponding
expression for a free electron of the same average kinetic energy.

PTUTT zOwxUOxOUI EwUOO#AD®BBHzul U 'UauB)d Ul UEWI O Pl Ud wd 1 Y
and then, to get the (tiny) Lamb shift, he added an (infinite) self -energy correction term for the
bound-state electron, and subtracted another (infinite) self-energy term for a corresponding free
electron. INUT T wx UOET UUOwWPUWPEUWEPUEOYI Ul EwUT EOwOT T wOEUL
YUSG wW?EUI UUI E2 wOEUUAwWUOWT 1 Ow0T 1T wEOUPT UwUOOWEOGOT wbOUU
non-relativistic assumptions; Richard Feynman extended the process to include relativistic
ITTTTEOUBwWwwW3T 1T wi OUPUI wxUOBETI UUWDUWEEOOI Ew?UI OOUOEC
Quantum Field Theory (QFT) and Quantum Electrodynamics (QED) t EOOWEEUI EwOOuw! 1 |
proposed self-energy solution to the Lamb Shift. Note that this proposed solution does not
attempt to eliminate the original infinities in the Dirac formulation of the Hydrogen atom ¢ it
accepts the defective formulation with its two infinities (a radial wavefunction that is infinite at
the origin, based on the Coulomb potential that is infinite at the origin), computes the baseline
energy level, adds an infinite self-energy, subtracts another infinite self-energy, and re-scales the
result to match the experimental measurement -- a total of four infinities altogeth er.

3T UOUT T wOT 1T whuNAYzZUwOOwWUT T wxUT Ul OUWEEaOwl Rx1 UPOI ¢
to extremely high precision (1057.85 MHz, as reported by Karshenboim in 2005, summarizing
and combining many different measurement techniques). The ¢ ¥ - p"¥ transition energy in
atomic Hydrogen was measured in 2011 by Parthey et al., obtaining a fractional frequency
uncertainty of 4.2 x 10%5. The detailed QED calculations of Peter Mohr in 1974 were capable of
predicting the Lamb Shift value of 1057.867(13) MHz for Hydrogen, and 1059.241(27) MHz for
Deuterium, and Karshenboim 2005 gives a detailed summary of further modern refinements. A
very modern summary of both the theory and measurement is given by Peter Mohr in the
CODATA 2010 Update Report.

( Owli PUwhNt Kw- OET Ow/ UPal woOl EQUUTI Owwl aOOEQWUEDPEOOW’
EwPEawUOwUPI I xwUT 1T wEPi I PEUOUDPI UwoOi wOT 1 wEDYI UT 1T OEI
Dirac said,

I must say that | am very dissatisfied with the situation, because this so-called 'good theory'
does involve neglecting infinities which appear in its equations, neglecting them in an arbitrary
way. This is just not sensible mathematics. Sensible mathematics involves neglecting a quantity
when it is small ¥ not neglecting it just because it is infinitely great and you do not want it !



This dissatisfaction with the theoretical foundations of Quantum Electrodynamics led
several workers, notably Ed Jaynes and Asim Barut, to seek alternate formulations that could
match the good experimental measurements, but with a firmer theoretical foundation, and
without requiring the questionable renormalization procedure. Asim Barut developed a theory
EEOOI #Healdyuahtddwi O1 EVUUOEA OEOPEU? WEEUI EwOOwI RUI OEDOT w!
Abraham -Dirac-Lorentz (ADL) radiation loss term, and, with Joseph Kraus in a series of papers
from 1983 to 1992, specifically addressed the Lamb Shift. While the Dirac formulation of the
Hydrogen atom is a linear differential equation, the Barut self -field formulation is a nonlinear
integro -differential equation because of the added nonlinear radiation loss term. They were able
to solve this difficult equation in 1992 and show that, in the first iteration, it agrees with the usual
QED result, but it did not eliminate the need for renormalization, so it appears to have had limited
influence.

In 2000, Carver Mead published Collective Electrodynamicsn which he summarized the
history of Quantum Electrodynamics and strongly emphasized the foundational problems
associated with point-charge assumptions, and the need for selfconsistent, continuous-charge-
density formulations of the problem and its solutions, which would therefore n ecessarily be
nonlinear:

The electron wave function depends on the potential; the potential depends on the charge
density that is determined by the wave function. Thus, we have an inherently nonlinear
problem.

In 2008, Vladimir Kalitvianski int UOEUET EwUT I wEOOEI xUw Ol w?@UEOUUC
UOI EUDPOT » OWEEUI E wlithdyunte@atidnh Baindéh ithE eledttmidand the nucleus:

Few, however, knowthata UD OD OEUW? EOOUE?» wbUwi OUOTI EwEawUil 1 wEUOOPEU

Ei OO0 UwoOi wbOi UUPESwW3T 1T w?2x0O0UDUDYH ik fiededlell touhE OOUE > wbUw

distances r Oao(me/ Ma), but it is of exactly the same nature.

Kalitvianski showed that the smearing of the nuclear charge due to the motion of the nucleus
leads, in the first iteration in the non -relativistic case, to a modified Coulomb potential that is
indeed no longer singular at the origin, an essential first step and a promising sign that his
approach is on the right track. But much work was left still to be done.

(OQwUT OUOEWET wOOUI EwUT EVwWUOT 1T wb ER E&EEO Twi?10 OBIWBI@:0uwBD wik
Niels Bohr had to take the finite mass of the nucleus into account in his 1913 model of the atom
DOWOUETI UwUOWOEUET wUT 1 wEYEDPOEEOI wUxI EUUEOQWEEUEOWU]
mass of the electron, which accounts for the common motion of the electron and the nucleus
around common center of mass. This correction is commonly used in other modern treatments
POOUEEOCaAaOWUT | whNKAWEOOOwWEaw! 1 UT 1T wEOEW2EOx1 Ul Uwl EU
which they describe the well -known reduced mass correction). But this is really just a clever trick
that converts a true two-body problem back into a much simpler but not -exactly-equivalent one-
body problem with a reduced electron mass and a non-moving nucleus, which does noteliminate
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the singularity problems of the point -charge nucleus, and does notaccount for other properties
of the nucleus than its large mass (such as its norzero radius, its spin, and its intrinsic magnetic
moment).

# E U b b O habwdpécdation (1928) foreshadowed early attempts at relativistic two -body
analysis by Gaunt, Eddington in 1928, and Breit in 1929. But strictly speaking, these analysis
applied to the situation of two electrons interacting through electromagnetic fields, not an
electron and a proton as in a Hydrogen atom.

Bethe and Salpeter in the 1951 developed a gneral, fully covariant, quantum -field -theoretic
approach to the relativistic two -body problem, known as the Bethe-Salpeter Equation, however
this 16-component, 4-dimensional integral equation with two time dimensions has proven
extremely difficult to anal yze and interpret (Grandy, 1991).

From here, the literature of relativistic two -body analysis appears to split into three major
threads, which appear to have advanced rather independently of each other.

1. First Thread, (Barker/Glover 1955, Sapirstein/Yennie 1990, Mohr/CODATA 2010):
Barker and Glover in 1955 developed a reduction from the full 16 -component two -body
problem to a reduced 4-component equivalent one-body problem using the Foldy -
Wouthuysen transformation, with application to the Hydrogen atom. Th is method
accounted for the mass of the proton and the intrinsic magnetic moment of the proton.
The result of this is a highly refined relativistic reduced -mass correction, as described in
Mohr/CODATA 2010, and other very small corrections that are much s maller than the
Lamb Shift. The Lamb Shift is treated as a radiative correction, i.e., a consequence of self
energy and vacuum polarization in quantum field theory. The physical origin as stated
Eaws$PEI Uwl YYAOoww? EEOUEDOT w i andl #bsobbOvirtutadi EVU OO
photons and as a result its electric charge is spread over a finite volume instead of being
xOPOUOPOI 62 ww3 OwET wEOI E U O uh&d( effétis Bd hat ¥ddtribetet OT wOT 1
significantly to the Lamb Shift; The Lamb Shift is a result of the electron interacting with
itself (self-energy) and the vacuum (vacuum polarization) via virtual photons. In this
view of the Hydrogen Spectrum problem, it is widely accepted that renormalization is a
theory of the Hydrogen spectrum is on very solid ground; known relativistic two -body
effects such as nuclear recoil and radiative-recoil corrections are far too small to account
for the bulk of the Lamb Shift. So, in this community, Two -Body Hydrogen appears to be
regarded as a solved problem. Possible weaknesses in this position are: (a) Thaller 1992
has pointed out that the Foldy Wouthuysen transformation, on which Barker and Glover
is based, is not strictly rigorous, (b) Grandy 1991 has pointed out that Barker and Glover
had to treat Hydrogen as a bound system of two Dirac particles, which is not strictly
correct (this is equivalent to treating a proton as a very massive positron), (c) Grandy 1991
has pointed out that Barker and Glover underestimate the size of the effect of the Dirac
moments, and (d) the general concerns about the validity of renormalization, which is not
accepted by everyone (including Dirac and Feynman).
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2. Second Thread, (Todorov 1971, Jllouli/Szadjian 1996, Crater/VanAlstine 1981 -2014} In
1971, L.T.Todorov developed his theory of relativistic two -body interactions which
involved an equivalent relativistic reduced mass correction and the derivation of an
energy-dependent complex quasi-potential in the equivalent one -body problem. Crater
and Van Alstine 1982-luN Wt wET Y1 OOx® Eauk#AaRP BEHOWSs SUEUDOO? wol Ul ¢
it successfully to positronium, muonium, and other two -body fermion/anti -fermion
systems. However, it is well-known t hat Hydrogen is definitely not a fermion/anti -
fermion system (proton massive positron), and so in this community, Hydrogen is
approached with great caution. Jallouli and Szadjian in 1996 described an approach to
Hydrogen that could extend the Two -Body Dirac Equation method to account for the
anomalous magnetic moment of the proton, however their equations were not in Breit
form, and did not account for the non -zero radius of the proton. Crater has been
developing an extension of this work that would rig orously address these and other
deficiencies, but as of 2014, this work is still in progress. Buonanno 2000 has pointed out
the great difficulties in rigorously formulating an equivalent one -body problem with
guasi-potential, suggesting that it may not be possible in flat spacetime, and curved
spacetime may be necessary to find the proper correspondence. So, in this community,
Two-Body Hydrogen is regarded as a very difficult, unsolved problem.

3. Third Thread, (Barut/Komy/Unal 198588, Grandy 1991} Barut and Komey 1985, and
Barut and Unal 1986-88 have described a 16component relativistic single -time two -body
wave equation, which has many desirable qualities t relativistic, fully covariant,
separable, accounts for spin and recoil of both particles, etc. However, it is not used (or
even referred to) in the Mohr/CODATA work, nor mentioned in any of the papers by
Szadjian or Crater. Only the book by Grandy 1991 refers to this body of work. It does not
remove the need for renormalization (so does not address the greatest weakness of Thread
1) and is presumably much more complicated than Barker and Glover and not necessarily
more accurate. So, perhaps it has not been adopted because it is more complicated for no
additional improvement in accuracy.

With t he above discussion in mind, we can now articulate the agenda of the present work. We
will quantitatively develop the hypothesis that:

1. The Lamb Shiftis not a result of the self-energy of the electron, nor an interaction with the
vacuum, as proposed by Bethe in 1947, and further developed over the following 67 years
in Quantum Field Theory. We hypothesize that the Lamb Shift is the result of a relativistic
two -body interaction between the electron and the nucleus (proton) which in 2014 has not
yet been determined by relativistic two -body theory. With this approach, no

(Feynman, 1965). But we are effectively speculating that there is a currentlyunknown
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relativistic tw o-body effect in the electron-proton system that is large enough to create the
Lamb Shift.

2. Following the suggestion by Kalitvianski 2008, we will explore the hypothesis that, in the
equivalent one-body formulation, the reduced -mass electron moves in a quasi-potential
that would result from a nuclear charge density that is a scaled-down replica of the
electron charge density, where the scale factor is closely related to (but not necessarily
exactly equal to) the proton-to-electron mass ratio. In the termsof the QFT literature, we
are effectively hypothesizing that the two -body relativistic nuclear recoil effect, if done
with a proper model of the proton (not an unusually massive positron), would be large
enough to explain the Lamb Shift.

3. We will use an iterative approach. That is, we will begin with the usual equivalent one -
body solution for the electron wavefunction, assuming a Coulomb potential from a point
nucleus, then derive the corresponding scaled-down nuclear charge density, derive a new
modified potential (quasi-potential), and then derive a second-iteration electron wave
function and corresponding shifted energy. While it would be possible to perform further
iterations, we will stop there.

4. We fully expect that there should be no singularities, cusps, or discontinuities in the
secondteration wavefunctions, no divergent quantities in the intermediate calculations,
and no arbitrary cutoffs necessary to make integrals converge. Instead of introducing new
infinities, we will eliminate the original infinities (the singular Coulomb potential and the
Dirac wavefunctions at the origin).

5. We will not do the mathematics in momentum -space, introducing arbitrary cutoffs in the
integrals. We will operate on wavefunctions directly and compute energy values fr om
those wavefunctions directly.

At this stage, we are only trying to demonstrate feasibility of a new approach, not yet compare a
fully -developed theory to experiment at maximum available precision. Still needed is a first -
principles relativistic deriva tion of the quasi-potential for the two -body electron-proton system
that corresponds to the scaleddown nuclear charge density. Given the comments from modern
relativity specialists (Barut, Unal, Grandy, Jallouli, Szadjian, Crater, Buonnano), this is an
extraordinarily difficult task that may take many more years. The goal of the present work is to
demonstrate that a reasonable form of such a quasipotential can feasibly lead to the correct sign
and magnitude of energy shifts large enough to explain the Lamb Shift and 1S-2S transition of
Hydrogen, thus showing that a search for the corresponding relativistic mechanism would be

worthwhile, and giving some guidance as to what form it might take.
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2. The Two-Body Hydrogen Problem ¢ Non-Relativistic Case

2.1.Background
The usual non-relativistic time -independent Schrédinger equation for the Hydrogen atom is
o VX ) LIRY v Y ~
C—dﬂ( I 6o O wi [ IhHHe T1h
where [ 1 h-F%o is the single-component wavefunction in spherical coordinates, Eis the energy,
m is the mass of the electron, andV(r) is the central potential due to the positively charged
nucleus. The usual assumption is that the nucleus is a norrmoving point charge, which implies
an infinitely heavy nucleus with infinitely high  charge density in zero volume, leading to the
central Coulomb potential
s ] 2 .
Wl “r| - ——h
-1 awl
which is obviously singular at the origin. After separation of variables [ 1h-o
Yi g —B %o, the radial part of the equation is

v 3 Cy ca - - o
Y |1 T Y 1 5 O wl aa p Y T
where | is the orbital quantum number. The well -known energy and radial solutions are
: an' o° N
O Al A Yigl 1%l Q&%

Pa-58c chdfes

where O j 1 is the associagd Laguerre function, and @ is the Bohr radius

. .l_u_ O
w —
an
and the usual normalization conditions are
Yei Qi op AT A r sl OERW-QI p

In the particular case of the ground state where¢ pand & T, the radial equation reduces to

Y2y P Sy s
| w | W

In the present work, it will be convenient to have the normalized radial and full wavefunction
solutions for the 1S, 2S, and 2P states (from Beiser, 1969):
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State Normalized Radial Solution Normalized Wavefunction Solution
W ! Nw!
i _ ] _
¢New ! W ™M w ! w
) . p | . p 1Al©
2P Y | —— Q [ | — m Q
¢Mpw I w e w ! W

2.2.Modified Potentials

Note that the above solutions are not singular at the origin (unlike the relativistic case), although
their derivatives are not continuous at the origin. The above solutions arise from the Coulomb
potential, which is singular at the origin, co ming from the assumption of an unmoving point
charge nucleus with infinite charge density at the origin. Rather than accepting these solutions
as a final result, we will treat each one as a first iteration. Now that we have a first electron
wavefunction corresponding to the point charge nucleus, we can derive an improved, non -
singular, nuclear charge distribution, based on a scaled-down and properly normalized version
of the electron charge distribution from the first iteration solution above.

2.2.1. 1S state
For example, for the 1S ground state, the normalizednextb U1 UEUD OO WOUE Ol EUWET EUT |
EOxOPUUEI 2 wbhDPOOWEI

¢

0 i vl ———0Q
Naw!
where the proton-to-electron mass ratio* — p Y @@B Our key assumption is that the
nuclear charge density” 1 PUwUT 1 wUGUEUT wOi wOT 1T wUEEOI EwOUEOI EUw
the unit charge 1], so
l no 1 n‘s 1S TQ 8

The first step will be to deter mine the new potential corresponding to this new, smeared -out
nuclear charge distribution. We will address the particular case of the ground state first, before
addressing the general case.

Recall that the potential energy V(r) at distance r from the nucleus is defined as the integral
of the force required to move a test charge from infinity to r:

Wi 00 Q@B

For a point charge nucleus, we have Ol , SO it is trivial to show that this leads to the

Coulomb potential. For a general spherical charge distribution ” i , the calculation is more

15



involved. Without loss of generality, we can place the test charge on the z axis at position ©
i 5FT[FI'[ . The first step is to find the force acting on the test charge ata from an infinitesimal
element of the charge distribution ” i located at®d 1 h—ko 8

i h—Io

Figure 1: Computing the force on a test charge at 6 due to a spherically symmetric
charge distribution " i .

In this case, we have

) L
"Oi L ——AlOQwEé a
T - D &
i.e.,the usual P i force law, where the A || Qerm is included because we need onlyinclude the

component in the -z direction, since the perpendicular component of the force will be cancelled

by the charge element on the other side of the z axis atke “ . Eliminating A 1| Gand stating the
volume element dVol explicitly, we have
n "1 i AT, ... e
Ol —_ — — I OB+ Qo O—Q 8
T - D & D &
The distance between the test charge and the small charge element is
D& i cii AT-Oi
Substituting ” 1 and © Ginto the expression for 'Oi  and performing the integration in - %o
gives
o n' Q i 1Al L
O 1 — —— I OE+0Q—Q 8
¢C-w i cii Al-©0 1 -~
This integral can be done in closed form (by Mathematica), leading to
s n — ¢l ¢
O i —_— Q - =
- 1 p P o o
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i.e., the usualP i force law, with a correction that has an effect only near the origin. Performing

the final integral to find the modified potential energy for the 1S state:
w i O 1 QqQ

leadsto

r’] P [
T“-‘po p('b 8

W i

i.e., the modified potential energy w 1 looks like the usual Coulomb potential energy w i
with a correction that has an effect only near the origin, as shown in Figure 2(b).

10r

1or Electron
charge densit
n'y i
\ Nucleus
o5y 05y \ " charge densit
Nucleus VT
charge density / !
"o -
0.0 —— 0.0 S
\f‘
Il —_ Modified o
T~ Potential _—
Coulomb . o1
-05) Potential -05) RN y;
v(r) /// Coulomb
) Potential
of @ . . . aol® YO
—2.x1071 1101 0 1.x10"1 2,410 -15x107 1 1.x10" 5. x10714 0 5.x107™ 1.x10" 3 1551071

Figure 2: Firstiteration 1S ground state radial wavefunctions and potentials ( wavefunctions
on arbitrary unit scalesto allow them to be plotted together; potentials are scaled relative to

W T ——). (a) Large spatial scale, showing the exponentially decaying electron

charge density and the steep, singular Coulomb potential. (b) Smaller spatial scale,
showing the scaled -down nucleus charge density, and the corresponding modified potential
T {», which is not singular at the origin.

4UDPOT w+z' GxPUEOzUw1UOI OwbbwE BOwEiswUT OpOwUl EOwOT 1 w
: n' n
(A) T[ “ * G 1
“- @ T“- 1

v

PT1 Ul whpl wElT I DO1 wUT 1 wUOUI -9 Ownd MbsWl Galy festate @ EID thithe w E U w w

slightly more concise form:

W i
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2.2.2. 2S state
For the 2Sstate, the conventional wavefunction solution is
P

i —
— Q

®

UEOI EUWET EUTT w?pPEYI i UOEUD

™" w !
...... 5
¢

e @ |

and the first-iteration charge density ” 1 will be

LA} ‘ ‘l _
“w !Q 8

S W

0 i I i — Q0
&)

"o 10 i 1 ‘1 z
n n ¢ S o C
Substituting ” 1 into the expression for 'O& and performing the integration in  %ogives
P i e
o i @ ¢ 1 TAle
O 1 — ~ - '
pt- o i cdi AT6 1 -

This integral can be done in closed form (by Mathematica), leading to
— n Jp— Topti p
O 1 —_— Q —_— = —
- 1 P P W ¢ W T

which le ads to the modified potential energy for the 2S state
. ] o — o' i ‘o ‘i
w 1 ,,r] - p Q P —= E - E - 8
-1 TW T W Y w
4UDPOT w+z' GxPUEOzZUwW1UO!I OwbbwEBAwEIswUT OPOwUl E0wOT 1 w

OELQ—Q 8

W T n— “n— B(Jt) m 8
p - w - Tl T
in the slightly more concise form:
i o= ol p
‘ Q —— =
T & p 1 T

And we can restate @ |
i

— 8

i

€10

L i
W i —
T |

@ 1 isshown in Figure 3.

18



000
-0_05:
—010}
~015

-0.20

-0.25

-0.30

Figure 3. Modified Potential

2.2.3. 2Pstate

For a cylindrically symmetric charge distribution

more involved.

Modified P

Potential .~

W 1 S
A

Coulomb
| Potential
V()

-5 %107 13

@ 1 forthe 2S state, scaled as in Figure 2. The unmodified Coulomb
potential is shown as a dashed line for reference .

0 5 x10~ 13

from an infinitesimal element of the charge distribution ” i h— located at®

Figure 4: Computing the force on a test charge at 0 due to a cylindrically symmetric

5 -

charge distribution ” ih—.
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" 1h— such as the 2P state, the calculation is
Without loss of generality, we can place the test charge at point
® 1 h—hrt in the xz plane. The first step is to find the force acting on the test charge atd



For the 2P state, the conventional wavefunction solution is

. 0 AT
[ i h— ——— —Q
™M w ! w
sothe scaledE OP OOwWOOUOEOP&T EWOUEOI EUWET EUT T w?PEYIT 1 U
v - - < AT
0 ih— ‘I ‘“ h— —— —Q
™ w ! w
and the first-iteration charge density ” 1 will be
e . , . i A O— _
" 1h— 0 Ih— ‘ 5 h— —Q
n n [ r G
In this case, we have
. n "ih—_ .
O | h— - —— Al QwE a
T - D &

i.e.,the usual P i force law, where the A 1| Qerm is included because we need only include the
component in the AO direction, since we will be integrating the force along the line at angle —
in the xz plane; perpendicular forces will not contribute to the potential energy.

The distance between the test charge and the small charge element is

D& i il OEFOEFAT% AT-OAT-©6 1 8
Using
ATIO ——
D ®
where i ischosensothat! /U" #notethati 9 &is not the cutoff radius i

i 1 OEIOEFAT® AiI-OAT-O

and stating the volume element dVol explicitly, we have

. A " 1 h-fe i 1 OEFIOEIATW AI-OATS©6 . ..

O i h— - - i OEL % Q-G 8
T- i ¢i OEIOEIAI% AI-OAT-6 1 -

Substituting ” i h—, and recognizing that, because of the symmetry of the problem, the

contribution from the +y and ty sides of the integral are equal, so we can just take twice the

integral of %oover the range 1t , gives

s n Q 1 Al &1 i OEIOEFATw Ai-GAT-©6 . .. |

O 1 h— - i OEFhQ—Q 8
et - w i il OEIOEFAT®w AT-OAT-O 1 -

There are two interesting special cases that are easier t@olve than the general case, and can be
used to verify the general case: (1)— T, and (2) —
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In the case — 1T, we have

o 1 Q i Al & i
O 1 hm — .
ot - w i cii Al-©
Performing the integration in %o gives
1 n' Q i Al & i
O 1 hn z -
¢pt- w i ¢l AT-©

This integral can be done in closedform (by Mathematica), leading to

n

0 i
T -1

which leads to the modified potential energy for the 2P state at —

n l

-1
which can be re-stated in the slightly more concise form

@ ihm

C o C .
p pCa‘ Q PCE' PCa‘

i — i i
p pCr Q pCr pC—

@ ihm :

T“- 1

Usinga3? QOUET UWwExxOPEEUDPOOWOI w+ 7"

i s
po- w - Tl
@ ifr is shown in Figure 5.

l'l . - ll l‘l
P OO Q 09— 09 POX =

OB+ Q2—Q 8

OEFQ—Q 8
Pl Pl
[ (/&)
s %ai 8
ST

Do O—0 8

In the case — - , we have
0 ik  — o i OElAl &
q ot - w i

- n Qi e e
O I h T - OE+AIl &
C ot - I
where
o o OE+
(0]
- 1ii OB+
(0]

O i i ci OEL
O i i ci OEL

il OEFAT% 1 -

O 0O v

Q-0 8

9

and K and E are the complete eliptic integrals of the first and second kind, respectively.
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Currently, we have not been able to carry out the remaining three integrations to obtain
@ ih . However, itis possible to do a numerical integration, and then fit a curve of a similar

formas @ 1T, leading to

o n
w Ihc— T p
Q p 2L pto Pt o1 Pt P!
L B p wi pqgu vp g pRTTT ¢Thmmn
p p i p i

pTmnNT  @mumnmT T p T T T AT T TE

® ihT andw ik are shown in Figure 5.

0.00 T T

[ ~— Modified /
-0.05¢ M’"““H Potential = 1

w ik =
—010f \

~015} / /] Modified
[ VA !/ Potential
l". \ / .-" W IFT[
- |\ [
-020} (LI [
A
- \\ /
\ / /
-025} VoY 1
Coulomb '\ /% /
Potential +*/ | \/
V()
-0.30 : :
-5.x10713 0 5.x10713

Figure 5: Modified Potentials @ i fit andw 1 h- forthe 2P state, scaled as in Figure 2. The

unmodified Coulomb potential is shown as a dashed line for reference

Turning now to the general case, isolating the %cintegral gives
g - L i1 OEIOEIAI® Ai-OAi-0 o
; Qi OEFAT & Do'Q—Q 8
ot -w i i OEIOETAT®W AT-OAT-O6 1 -
The %dintegral can be done explicitly by Mathematica, leading to:

O i h—

. n' g PP i O Ovuv _ .
Oihe —— 9 1 OEIAI & . Q-0 8
ot - w i'0o ©
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where

, 11l OEFOE

O © 5

, o111l OEFOES

U U O
0 i i i Al —
0 i i i ATS& —

and K and E are the complete elliptic integrals of the first and second kind, respectively.

Currently, we have not been able to carry out the remaining three integrations to obtain
@ ih— . However, itis possible to do a numerical integratio n, and obtain a very good fit with
the interpolation formula below, which has been tested at — 1 -h—hR-D
w ih— Al 6w im p Al & o 1ﬁc—

® iﬁc— Al & o im o 1ﬁc— 8

® 1h— isshown in Figure 5. Note that this potential does not have spherical symmetry near

the origin, but it converges to the usual spherically symmetric Coulomb potential a few 1 away

from the origin.
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Figure 6: Modified Potential @ 1h— for the 2P state, scaled as in Figure 2.
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2.2.4. Relationship to other Cutoff Coulomb Potentials
It should be noted that many other physicists have recognized the problem with the singular
Coulomb potential, and proposed a number of ingenious candidate for ms to cut off the excursion
to Hb near the origin, as shown in Table 1, for reference and comparison. The present work
differs from previous approaches in that

9 the cutoff radius is not a free parameter (which is usually difficult to either determine or

justify), but is determined self -consistently from two -body considerations;
1 the potential may have inflection points in r (2S)

1 the potential may not have spherical symmetry near the origin (2P).
1 the potential may not be monotonic in r (2P).
Author Approach Formula
| CRL N
Wannier Cutoff " -1
w1 N ,
(1943) Coulomb L BT
p TE-1
vemas | U P B
Patil (1978 . - 0
I ) (first-order)
Truncated f
Patil (1981) Coulomb Wi ——
T - | |
(second-order)
LN A
Moshinsky Dirac ol - i
(1989) Oscillator N [
vo—— ¢ — A
o T-d I
Mead ciﬁzizﬁﬁlg oi U t
(2000) m_hogel .
Charged Shell T cd R
General Soft . n
Hall (2009 Wi _—
( ) Core Coulomb L SR
Two-Body 1S w i — P QO p - i -
Present Two-Body 2S w i —p QO  p — -— - = R —
Work
(2014) o i D p ek
Two-Body 2P vt :
_ i i p o i pi .
QPST PST X T T g
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Table 1: Historical approaches to Cutoff Coulomb Potential, compared to the non -
relativistic modified potentials of the present work.

2.3.Non -relativistic Problem Statement in the General Case

The General non-relativistic formulation of the present approach is given below. We begin with
the usual non-relativistic time -independent Schrédinger equation for the Hydrogen atom:

2 e ) e~ N .

C—drlf I h—Pbo O wih¥bo [ 1 o Tt h
But instead of assuming a Coulomb potential for an infinitely massive nucleus, we now assume
the potential is determined by the effective nuclear charge density from an assumed two-body

effect, which we model as a scaleddown version of the electron charge density, scaled by the
ratio of the masses:

o | ko "Odah-+Hko Q G
o~ n " 1 h4bo
Oi h—IP6o - ATlOQwé a
. U %0 G
"ihdHe nN° S h—'c%os
Therefore
R n' § ° hHos
w | ko ” —— AT Q0 ED
- D&
And finally we have (in the non -relativistic case):
) e~ . r] ‘ g h—l’-‘%os e~ o
—N [ 1 hHbo o — e — I|OQooanar ihH6 T h
ca T - D &

Now we can see that this is a nonlinear integro-differential equation, where the effect of the
nonlinearity is limited to a region very close to the origin.
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2.4.Energy and Electron Wavefunction for the 1S state

The next step is to conpute the new energy and electron wavefunction corresponding to this
modified Coulomb potential (bp"y‘l . This is a non-trivial task, even in the simplest case of the
first iteration of the non -relativistic 1S ground state. We will first set up the proble m, and then
show the various methods we have used to solve the problem.
The energy level of the unmodified 1S ground state is
o)
Ca

Because we have made a modification to the potential near the origin, we should expect that there
should be a small change in the energy for a sefconsistent wavefunction solution. Let us define
the modified energy ‘O as a tiny fractional change to the original energy:

2 .
o) p - h

O Op -

where - is a small, dimensionless quantity.
We can estimate the approximate sign and magnitude of - for the ground state 1S, based on

the established measurements of Lamb Shift, in which the ¢"Y energy is shifted upward, relative
to ¢0-, by about 1/2,000,000 of the value ofsO S, where O is negative, as shown in Figure 7.

But since the 1S shifts are about twice the size of the 2S shifts, we would expect the Ground State
Shift to have the same sign and about twice the magnitude of the Lamb Shift, leading roughly to

This estimate will be needed later as a starting point for a numerical solution.

h h )
For the 1S ground state, n=1 and I1=0, so we have, in our current iteration:
: .G, : ca | D :
Y | T Y I 5 @) w I Y | Tma
Substituting the previous expressions forO and @ 1 , and using the fact that
n o)
T" - aw

leads to the Modified Ground State Equation (along with its two boundary conditions and the
charge normalization condition):

: G, ‘ p - q - | : ‘
Y l ‘|Y | R R p Q p‘I Y | Tt
Y m T
Y B
Y 11 Qi p
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and the challenge is to solve for the fractional energy change- and the wavefunction Y i 8

Energy Levels for Atomic Hydrogen

Schrodinger Dirac
=3 Ez3=-15¢€ v HHH /!
: A == m 3512 LI:T— i T 385
e — 1L B 2P 32
A Ey=-34e “ .................... LT ‘ i 2P 12

Energy (eV)

Energy shifts magnified 10000X
{ f Levels split based on j, even/oddness of ml
{ } Arrows represent spin-down / spin-up states

Figure 7: Energy Levels for Atomic Hydrogen for the nonrelativistic Schrod inger and
relativistic Dirac models.

2.4.1. Baseline solution for the 1S state

We have found it useful to define the Baseline Ground State Equation as

Yooy P~ S v i
| w | W

where we have started with the Modified Ground State Equation, and simply dropped the
exponential term, which described the correction near the origin. This is a linear sub-problem,
the solution of which can be found by Mathematica:

Yy i o oY p L_F:rf,—' p - w0 p L_nqrfb—' -
p - p -
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where Yofocfd PUwW3 UPEOODz Uw" 601 OUIT U, dirst dlesdrited by Grarcdsddd E w % U &
Tricomi in 1947, and "O I P is * UOOT Uz Uw " 00T OU1 60w ' axi UT1 661 0L
described by Kummer in 1837. Since we have the boundary condition 'Y H  1tand "O ¢I{d ]

diverges hypergeometrically for large i (i.e., it overcomes the exponential), while Y ofoh goes

to O for large i , we must have &  Thleading to

_— . S
p - w
The baseline solution”Y i describes the behaviorof 'Y 1 for i | 1 ,where the exponential

correction term that was dropped has no effect. This property will be useful in the numerical
solution.

2.4.2. Difference solution for the 1S state
Let us define the modified solution Y i as composed of the original unmodified
solution Y i with a small difference solution 'Y i added toit:
Y i Yo Yoo
where we recall that the original unmodified Schrodinger radial solution is defined as
Yo d)Lj'Q_ Y Q h
where we define for convenience

Y =8
w !

Substituting Y i into the Modified Ground State Equation and subtracting off the original
Schrédinger radial solution leads to a new equationin 'Y |

S p - C [
Y 1 =Y 1 = : Q — Y 1
l W | 0 P P |
- C — .
- T — Y 1 Tt
W o) P i
Note that this difference formulation eliminates the trivial null soluti on for 'Y i , because of
the presence of the driving termin Y i . Because of the nonlinear terms, Mathematica cannot

solve it. But, as before, we can construct the Baseline version of the difference problem by
eliminating the nonlinear terms:

Yooy P -~ S v i _vao =
| w o) w
Y H T
which leads to
v A . A D _l/l_""‘q' p ~ "C‘I —
Y i Y i Q W'Y —— Ihch— W - 8
p |7| - mw



which determines the behavior of the difference solution 'Y i forlarge i .

Interms of 'Y 1 , the full statement of the problem to be solved is:
C p - C o~ — l
Y | =Y | = : Q — Y [
| W [ P P |
- _ |
- i Q p — Y | L1
W | 0 |
) ) Y
Y Tt Y Tt —
w
Y B 7
Yoo Yo i Qi p

With the Baseline and Difference solutions defined, we can now proceed to find a numerical
solution to the problem.

2.4.3. Numerical solution for the 1S state

Hammerling et al. (2010) has developed a set of procedures for numerical solution of singular
eigenvalue problems on semi-infinite domains, with emphasis on Sturm -Liouville problems in
general, and with the time-independent Schroédinger equation for a central potential as a
particular example. Their standard approach is to truncate to a bounded interval, start with an
initial educated guess of the eigenvalue (energy) and use a twosided shooting method,
integrating from 1 Ttoutward, and from i i inward, and adapting the eigenvalue until
the two integrated halves match in value and derivatives at an intermediate point, leading to an
energy value and a complete, continuous function that satisfies the differential equation and both
boundary conditions.

Since we have the analytic Baseline solution for large i which satisfies thei  Hbboundary

condition , we can use that instead of the usual second inward shooting method integration.

This problem can be solved numerically using the following procedure:

1. Goal of the procedure: The procedure is designed to solve for - , and for the two
additional parameters which will define the wavefunction shape: Yoo h(the
inside starting value) and @ (the scale factor for the Baseline solution).

2. |Initialization: ~ Choose an initial value for - ,d, We used p8t p 1 . Choose an initial

value for Y i . Weused @1 1T iV .
3. ? . U U b Eshbhting integration : Define the interval in which to perform the outward
shooting-method integration f or i running from i toli . We used a value ofi
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10.

—®,andi ——— Theinside slope isgivenby'Y i Yo
—38The integration can be done directly in Mathematica by NDSolve .

?. UOUDPEI » wECEGA VR QUOOBED 6 WE OE OU D E uircledess OB O1 wU
the scale factorc 8

Continuity Condition: 6 1 wOOP wl E YinUubEEu G WBEIGDUWA D EEOwWDP OUI T UEUD
Ol 1 EwOOwWOE Gl ub Uwwd @B O soludi ! E U 1. @®r@dd two points
i and 1 at which to match the numerical and analytic solutions. We used i C TUIT
and i @ TUIT, as shown in Figure 9(b) and 9(c). Using the first point ati , we can find
the value of @, that allows the analytic solution to agree with the numerical solution at
i . With this value of P T WEEOwWUOT | OQwET inBo&0 dwa D RuRDEHB®ED @ Buw
solutions agree to within some relative tolerance at the second pointi . We set the relaive
continuity tolerancetop8t p T .

Charge Normalization Condition: We can also numerically integrate the charge
normalization condition, using the inside numerical solution up to i and using the
outside analytic solution from i to Ho. We can then check to see if thetotal charge equals
1 to within some relative charge tolerance. We set thecharge tolerance top8t p 1T .
Inner Loop Iteration Condition:  If the charge normalization condition is not met within
the prescribed charge tolerance, adjust the inside value’Y i 8We used the
following simple strategy, essentially a discrete Newton -Raphson method: On the second
iteration, increase Y | by 1%. On subsequent iterations, linearly interpolate or
extrapolate from the previous best two iterations to the value of Y | 8that would
give 0 chargeerror.

Inner Loop Iteration: Loop back to step 3 and repeat until the charge error is less than
the charge tolerance. When this condition is met, we will have a charge-normalized
composite solution that may not yet have agreement between the numerical and analytic
solutions at i , for a given guess at the energy- 8

Outer Loop Iteration Condition:  If the numerical and analytic solutions do not agree at
1 within the prescribed relative continuity tolerance, adjust the energy level - 8We used
the following simple strategy, essentially a discrete Newton -Raphson method: On the
second iteration, increase - by 1%. On subsequent iterations, linearly interpolate or
extrapolate from the previous best two iterations to the value of - that would give 0
relative continuity error.

Outer Loop lteration: Loop back to step 3 and continue adjusting - until the relative
continuity error is less than the relative continuity tolerance. When this condition is met,
we will have a charge-normalized composite solution that is continuous ati , so we have
found a consistent value for the energy - 8
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11. Reconstruct Full Wavefunction:  Once the composite numerical/analytic solution for

'Y 1 hasbeen found, we canuse'Y i Y o 'Y 1 toreconstructthe final
modified wavefunction 'Y 1 8
Starting from initial values of - p8&t p T and Y i T8t 11 TtYe hit
takes 6 outer-loop iterations to reach a value of - PP Y1 o TPXTT and
Y i Mt P g PYphwith @ T80 w w w w ¥y hwith a relative continuity

errorof (& p T and acharge errorof0&8 p TT
The composite numerical/analytic wavefunction solution is difficult to visualize in a single
xDEOUUI wel EEVUUT wOT T w?UUPI T 2wOEVUUI wOi wlTil)andUOE OI O
on very long (& ) spatial scales. We will describethe general features using a conceptual but not
to-scale diagram in Figure 8, and then support this description with accurate detailed plots at a
variety of different scales in Figure 9.

Conceptual Diagram
[ Differences magnified about 75X
Original i Not To Scale

Charge Density| | )
AY | A Charge lost nedhe peak

Crossover point

Modified

Chargeadisplaced down the
sides

Crossover point
/

1

j—

Difference
Wavefunction

Y |

Figure 8. Conceptual diagram (not to scale) showing the general features of the modified
ground state wavefunction 'Yp"\é i , with reference to the original ground state

wavefunction Y 1 . The difference wavefunction 'Yp"b‘l is shown in the lower panel.
Di fferences have been magnified about 75X to show general features.

The original wavefunction Y 1 hasacuspati 1. The modified wavefunction Y i
Il EUWEW?UOUOET EwUOx? WEUWEWOOPT UWEOXxOPUUET wYEOUI Owb
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the origin. At the crossover point, about i X8 wopm | cuv Y pg& pvd, the
modified wavefunction becomes larger than the original wavefunction, indicating that some

charge has been displaced down the sides of the distribution. The same charge déplacement
features appear in the difference wavefunction 'Y i in the lower panel. The numerical

method above works directly to compute 'Y |1 and then recovers'Y i in the last step.
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Figure 9: Features of the difference wavefunction 'Yp"bi h and modified wavefunction

Y i hrelative to the original ground state wavefunction Y i . (a) Difference

wavefunction 'Yp"bi Fplotted over the full range computed by the numerical method.

Note that this plot is comparable to the lower panel of Figure 8, but it shows the extremely

small actual scale of the charge displacement regions. (b) Difference wavefunction

Y i xkOO0U0U] EwPOwOi 1 wYyPEDPOD VA WOl wii | oitherdmedc@lE OET D OT wx OF
method. (c) Difference wavefunction 'Yp"b‘l Flshowing the continuity between the

6UOI UPEEOW?DOUDET » wEOEWOT | WIE Dia depLawadybitkep E1 » WEE U] O
numerical method. Note that this plot is comparable to the lower panel of Figure 8, but it

shows the extremely small actual scale of the charge displacement regions. The crossover

point occurs at about 1 X& wopTm | cu WY p& pd. (d) Difference

wavefunction "Yyy, 1 near the origin, where the numerica Ow ? POUPET » wubUw YEODEOWE
EOEOa UDE WY OU U idddivalicu The purple dotted line is the boundary condition

Y T — 8 (e) Reconstructed modified charge densities showing the resulting

2UO0UO0EIT EYiU Oix adgiees with 'Y | except near the origin. Note that this plot
is comparable to the top center part of the upper panel of Figure 8, but it shows the extremely
small actual scale (0.2%) of the charge displacement region near the origin (shown
magnified 75X as a ~15%effect in Figure 8).
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Now that we have seen the composite numerical/analytic solution for Y i ,we can use it to
guide us to a good closed-form analytic approximation for Y i

2.4.4. Taming the Singularity
We have already found a closed-form expression for the baseline difference solution:

, ‘ v L m— mw P L —
Y ( Y | Q WY p — hch— - 8
p - W
and a numerical solution for 'Y i , both plotted in Figure 10(a). We can use these to determine
the form of a Taming function “Yi that will transform the singular Y 1 into the finite
Y i, namely
i Yoo 8
i —_—
Y i

“Yi is plotted in Figure 10(b). “Yi starts at 0, rises up and asymptotes to a value of 1 after a
few I lengths, which suggests that p Q  might be a reasonable candidate to fit “Yi , as

plotted in Figure 10(b) (purple line). The exponential term ‘Q  is not chosen arbitrarily, it is
chosen to match the exponential correction term in the modified potential. The fit is close, but far
from perfect, so we will see that this candidate will require an additional correction.

0.0002 — . . . (b)
(a) 10 7,__,__::__
0.0000 pQ
08 // 4
00002} // ] / VA
Y 3 e 086 /1Yl : Y
b 7 : / Y i
—0.0004 yy 1 [/
Py !
rd |
ey, 04t a/
—~0.0006 | /, . ] /
/Y I I/
II
j 0zt |
~0.0008} / ] |
-000t0p | i 00
T T, P = : ‘ . .
0 5.x10 1.x10 1510 0 5x107 ™ 1.x107 13 15x107 13

Figure 10: Taming the singularity of the baseline solution for the 1S state 4
general form of the Taming Function.

We can tame the singularity at the origin of 'Y I by multiplyingby p Q ,which goes

to zero at the origin, resulting in a new Tamed Baseline function Y i that is finite
I Yivapil Ul wupEBaw+z' GxDUEOZz Uwl UOI Ao
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The new Tamed Baseline function’Y 1 is shown in Figure 11 (purple line):

0.0002 —

0.0000

—0.0002 | Yo
Numerical

-0.0004 | AugmentedTamedBaseline

Y i

Tamed Baselin& i
(finite at origin)

-0.0006 }

BaselineY i

-0.0008 /
/' (singular at origin)

-0.0010F

-0.0012
0

5.x 1071 1.x10"13 15%10™13

Figure 11. Taming the singularity of the baseline solution for the 1S state.

Examination of the residual between the numerical solution and the tamed Baseline solution

reveals that the residual is very nearly proportional to ‘Q  8Adding this correction in leads us to
the Augmented Tamed Baseline functions:

| Fre . . SL
Yo Yyl Q@ P Gy h;rf—' b, p Q8,07
P .l ‘
: . P - P e m e
v i o P QY p —h:h"— P 5 p Q 5,Q 75
p p U

where a very good empirical match to the numerical solution is achieved with 0 paT T TT 'Q(pxrﬁ
as shown in Figure 11 (red dashed line). For many purposes, it would be satisfactory to accept
this empirically derived approximation. However, there is a small curvature problem very close

to the origin that may be unacceptable in some applications. The remaining steps are designed
to eliminate this extremely small defect and properly derive the values of the free parameters.

2.4.5. Simple Approximate Solution for the 1S State
Making the following two approximations, suitable for small -:

. . — -® -Gl

Vo PRl 5, 10 g

p - W W
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Q Q

we have
. L a— — -0 -
Y l Q w p e ?

p Q 5Q 8

ETL.

I
Careful analysis shows that the taming function p ‘Q  completely tames the -— term (i.e.
its value at the origin and its derivatives all become finite). However, the taming function

p Q" only succeeds in taming the valueof the | } term at the origin; its first and second
derivative s are indeterminate at the origin. In order to have finite first and second derivatives at
Ui 1 woupl pOOWD 0w bl Hlilisimnuw.a. wapply und Erimy fubdtion twice
more), such that an application of + z ' G x b U Edd théJfirsl ddddsecond derivatives result in
finite values, as follows:

Y i 07 T hp 2 oo ik p o b0 8
Tl G W

Substituting this approximate expression into the Modified Ground State Equation

- — i .
Y i ‘S'Y i P - 7 C P Q P = Y i 1th
l w W w

collecting terms, carefully neglecting small terms, and setting the dominant error term to zero,
gives the following equation:

w o ¢¢ 0 ¢ ¢S ms8

The 'Y 1T Ticondition leads to:

@ ¢ L P 0 p 8
C C
These two equations can be solved ford and - :
= o ¢
28 o
o T T
- o PP YU @ cpot®

For the first time, we have a physical justification for the Two -Body ground state energy shift ¢ it
is proportional to the inverse square of the proton-to-electron mass ratio‘ . This approximate
value for the fractional energy shift agrees within T8t 1T p ¢ pp@T or 0.11% of the numerically
determined value of -, P YT O TPXTT®.

The final step to determine W is to satisfy the charge conservation condition. Substituting
Y 1 into

leads to
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wherel 1@ X X ¢ p Us¢he Euler-Mascheroni constant.

The final Simple Approximation for the 1S state is:

: L N— — -0 - ~— 1 Gl . £ —
Y I Q wp —— —p Q I = p Q 0 Q 8
Ti C ()
x v oo
w P 5 = c Y T W W ww Y @ 1T
T
o o G - .
0 ~W  PBITITMC X PO
¢ ¢
g T
o g PR WU QPO 8
The corresponding charge densities are shown in Figure 11.
1.000f ‘ i T . .
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0900 ] \ Numerical e Simple
. ) 0.99835 e I . o
o ny i /4 ~> Approximation
0seel Original . . Simple ';,/-;/ \\\‘:\\.‘
Charge Density’” =~ N, \ Approximation y/4 e + N
n'y i ! | 0.99830 | V4 ny i \
0.907 | 7 Numerical
7/
0.996 - 0.99825 | / \":_...
\
/ \
0.98a} / A\
0.99820 | V;}"f “;.\.;:
0994} / \
PSP I Ig" AP S R | 23107 _1x10™ 0 110 M 2 x10-M
Figure 11. Comparing the Simple Approximation and numerical solution for Y i 8

(a) Both solutions appear identical when viewed at this scale. (b) An even finer
inspection reveals that the Simple Approximation disagrees slightly (relative error of
0.00001) with the numerical solution in the magnitude of the charge density near the

origin.

There is a slight error at the origin (relative error of about 0.00001) in the charge density,
compared to the numeral result. This is not surprising, since the Simple A pproximation is only

accurate to first order.
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A more independent way to assess the quality of the Simple Approximation, without resorting
to comparison to the numerical solution, is to examine the Schrodinger Error "Y'Q , which is just

the left-hand-side of the Modified Ground State Equation multiplied by >

o) - _ ‘1
YA —— Yy i 2y L ép Q P — Y 1 8
ca i ) o) ()

For a perfect solution, of course, we will have "YQ T8 But since the Simple Approximation
is only an approximation, we expect that "Y'Q Ttfor this solution, as shown in Figure 12:

1[}: 4
[}5 : 4

I YOt T
00k _— —
05| \ I/ Ya m

1 | Il'
|

I \ I
10} \ [ ]
-1x10713  _5 10714 0 5 10714 1 %1013

Figure 12 Schrodinger Error of the Simple Approximation. The worst -case magnitude
of the Schrodinger Error is about 1.3.

2.4.6. General Approximate Solution for the 1S State

We can define an General Approximation with an arbitrary number of terms, and then use the
Schrodinger Error and its derivatives at a number of zero -points (including the origin) to create
a corresponding system of equations that can be solved. Finally, we can optimize the position of
the zero-points to achieve a minimum integrated squared Schrodinger Error, to give the optimum
General Approximation for a given number of terms.

Let us define O to be the number of terms in our approximation, 0 be the number of Origin
boundary conditions, and 0 0 0 be the number of non-origin zero points. We define
the General Approximation as

» . Y , . . .
Yo Q wp—‘?pQ I%pQ 0o p 0Q Q
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where the | + term has been tamed to orderd ¢ so that it can be differentiated 6 p times

(as needed for the) boundary conditions at the origin) and all the derivatives will be finite.

TheB o6 p Q Q terms constitute a kind of basis set with decaying exponential tail

and flatness at the origin that increases with ¢, suitable to build up finer and finer approximate
solutions.
The boundary conditions at the origin correspond to "YOn mh'Y&@n mh'Y&m T
etc., i.e., forcing the Schrodinger Error to be zero at the origin, along with its first several
derivatives. 31T 1 Ul w@UEOQUPUDI UwUI gUDPUI wi RUI Oforinaiely thes x OP E E U
Mathematica Series [] function can compute them directly. The first four of these Origin
boundary conditions are:

Yot 1o YT -t ¢ Y v
A A A o
Yemnm 1 ¢Y m m
Y Y =Y Y
Yem 1 T,n ,n ,T[ ’n BY T T
oA CA CA A (0]
Ve@e T ’Yn Y'n —Y’ T Y’ T E‘Y -
OA QA QA oA T

where we have relied on the fact that

Y T T8

Substituting into the General Approximation and carefully neglecting small terms gives, for the
first four Origin boundary conditions:

YOru T ¢d * ! p¢ oo ! ¢ pt pt @ p¢ p¢ T 4 T
wg ! TP pwg ! pft X ppc ! p& G po
Yer m ®@pr ¢ po v g m
CTMTT
oqgim ! po'mmt Yy ! o ocg'yY 5
LV We gy Tt
| ( ¢ | -
Y&m 1 vt g smm bocg o o
. w¢ Ttfi pw T-
w 6 o] o o o n
wem® !ty qyym ! ppc pcpe apgm
TGy
! (o mo Tt ! op’ T
wrer ¢oc¢ p ¢ p o p'e cTY
et vo - Y <
| - - _ _t -
' (o} (o} v ® (o} cft ¥ (o} n
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The equations for the 0 0 0 non-origin zero points are determined straightforwardly by

choosing the  points ihi 1 , and substituting those values into
“YQ 7 Good initial values for these points are | ci hi i hi -1 hetc, i.e., a
geometrically decreasing sequence starting at | ¢l 8 These points will be adjusted in an

optimization loop, which is minimizing the Total Squared Schr odinger Error (TSSE)

433% YA Qi

UUDOT w! Ul OUzUw/ UPOEDxEOQOw FidWinimum) i Gubctiob.Oas,ag U1 | OE U1
illustrative example, consider the case where there are( @terms in our approximation, 0
o Origin boundary conditions, and 0 O non-origin zero points. We will have a total of 8

variables to solve for: {~-foA A A A A H }, and we will have the following 8 equations :

Year T q!‘%! ¢ - T TE&)qJ ¢ - ct
YOt T ¢t * ! p¢ o@ I ¢ pt p¢ ® pet pt T g T
wg ! TP pwg ! pft X ppc ! p& cO® po
Yerr m @pf ¢ po v g m
CTMTT
oqghm* ! pom yYyrn ! o og'yY -
LW ‘ g Th
Yé&m T ! v Y 5 cmm b cl =
- w( T 1t p T-
@ < o o o o n
YO T D opXBTRXPO! XCORPT S YWp
Initial value: PUTXEQT B OGT | @X p8IPT @ Wb Y
. C D ppmiT@ @ & Y@@ ! pCOo@agoL B T LT X
' Gl W PCOXO T YT WuBoXd 0TI
v - P oty@oap@yYnpc! wxx®BX)YBgap
Initial value: ' woT @0 P YgqU!  XYUXRBCYp® XpCo
. . o ! TWoOBROPTHETLGG Y Yuvdoo@pgtd8weo
Loih ® PYB®W YR WOXQT T
“yda ) | PTOOEXTWHPLCOO! VLYWW TR G CT
Initial value: P Jou@ P ohuvewu ! ot XxXgxaecspp yr
‘ p. - I TOPPEYKWBHWCULC QT WL 0B Y
' E'h WTWULHOW PpTTTQET T
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After 70 iterations, this set of equations leads to the final solution:

- PP Yo Cp Pt
! PAITT T C @ UYT ¢ Q

! T8 wupTpm
! TEXTMwWwE O™
! TPUPGCPRT
! ISTOoWT Ypom

!~ P wpPCRX Y
W TBOWWWOPYPC T

<< <<

This approximate value for the fractional energy shift agrees within T8t 1T p 1T WpTTT or 0.092%

of the numerically determined value of -, p® Y 1 o mpx®, a slight improvement over the
previous Simple Approximation.

The corresponding charge densities for the General Approximation are shown in Figure 13. The
approximation is now indistinguishable from the numerical solution at the scale plotted in Figure
13(b), and is greatly improved from the Simple Approximation plotted in Figure 11(b).

1.000fF O

(a) "r’. \\\ rl . J (b) , ‘Y 1
/| . ,Numerical i n
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- ny i : [ . .
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0998 Charge Density’ Aenr?)r;mation i
Ny i / \PP 1 099830} ny i
0.997 ¢ [ Numerical
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0.995[ ; i
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Figure 13: The General Approximation (dy 4 4 ), compared with the

numerical solution for Y i 8(a) Both solutions appear identical when viewed at this

scale. (b) Even at this finer scale, the approximate solution and numerical solutions are
indistinguishable.
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The corresponding Schrodinger Error is shown in Figure 14. The worst-case Schrodinger Error
is about 0.0032, reduced by a factor of about 406 from the worstcase Schrodinger Error of 1.3 in
Figure 12.

0.003 | I N
0.002 | 188l ]

0.001

0.000 /| |-
—0001F 11y /]

—p.002t i il

~1.x10™13 _5 107 0 5 %1071 110713
Figure 14: Schrodinger Error of the General Approximation @y 4, Ao

The worst-case magnitude of the Schrodinger Error is about 0.0032, a factor of 406
reduction from the previous Simple Approximation.

The General Approximation appears to converge toward the numerical solution; increasing the
number of terms reduces the Schrodinger Error further and decreases the energy discrepancy
between the General Approximation and the numerical solution. For example, with 0 gy 0

o, 0 v, we find - PR Yo Yp p T, within TBITTTTT wp@T or 0.042% of the
numerically determined value of -, p® Y 1 o pXT®, afactor of 2 smaller than the previous
best General Approximation. The worst -case Schrodinger Error is reduced to 0.0008, a factor of
4 smaller than the previous best General Approximation, as shown in Figure 15.
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Figure 15 Schrodinger Error of the General Approximation (4,4, A ).
The worst -case magnitude of the Schrodinger Error is about 0.0008, a factor of 4 reduction
from the previous best General Approximation.
Beyond 0 Y, the method appears to continue converging toward the numerical values, but
slowly, and compute time goes up very fast at 0 p Tand beyond.

Despite finding a good closed-form approximation to the modified ground state wavefunction,
we have not yet been able to find an exact solution. For the moment, we must leave this situation
as it is, and use the methods we have developed so far to compute the modified energy and
wavefunctions for the 2S and 2P states, so that we can determine the 1.2Sand nonrelativistic
Lamb Shift estimates for the current Two-Body approach.

2.5.Energy and Electron Wavefunction for the 2S state
The next step is to compute the new energy and electron wavefunction for the 2S state,
corresponding to this modified Coulomb p otential (bg-‘y‘l , following the methods we used for
the 1S ground state.
The energy level of the unmodified 2S ground state is
)

@) TR 8
As before, we define the modified energy ‘O  as a tiny fractional change to the original energy:
. . ) .
@) Op - 16 0 p - h

where - is a small, dimensionless quantity.

We can estimate the approximate sign and magnitude of - for the 2S state, based on the
established measurements of Lamb Shift, in which the ¢"¥ energy is shifted upwar d, relative to
¢0-, by about 1/2,000,000 of the value ofsO s, or about 1/500,000 of the value ofsO swhere

'O is negative, as shown in Figure 7, leading roughly to - :
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For the 2S state, n=2 and |1=0, so we have, in our avent iteration:
a o ‘
Yoo ‘IS'Y i co_ 0O w i Y i ™38
Substituting the previous expressionsforO andw 1 leads to the Modified 2S State Equation
(along with its two boundary conditions and the charge normalization condition):

G, p - G -— ol pi p i : ‘
Y =Y — Q - - - — Y
! i l 0 | P P Ti T i l n

Y m 7
Y b n
Yo iiQiop

and the challenge is to solve for the fractional energy change- and the wavefunction Y i 8

The Baseline 2S Equation is

Yooy P~ S v i n
l W W

where we have started with the Maodified 2S Equation, and simply dropped the exponential term,
which described the correction near the origin. Taking into account the boundary condition at
i Hp the solution is of the form

- C

— . U] [
p - w
Let us define the modified solution Y i as composed of the original unmodified
solution Y i with a small difference solution 'Y i added to it:
Y i Yo Yoo
where we recall that the original unmodified 2SSchrddinger radial solution is defined as
i _
Y i ‘_L C = Q
cNCw ) w
where we define for convenience
Yy —° g
N !
Substituting 'Y i into the Modified 2S Equation and subtracting off the original Schrodinger

2S radial solution leads to anew equationin 'Y i
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. G, p - G o~ gi pi p i .
Y =Y — Q —_ - — - — Y
l [ l ™w loop le T 1 g !
. [ ol pi p i :
_‘_Q -~ - - 3 Y
W W le T 1 gi l n

Y B m
As before, we can construct the Baseline version of the problem by eliminating the nonlinear
terms:

Y | ‘S‘Y i P " - C Y i — | T
[ TW | W W
Y B T

which leads to
— T 4. C

.
p - w
which determines the behavior of the difference solution 'Y i forlargei.
Interms of 'Y 1 , the full statement of the problem to be solved is:
- — ol i i
Y i ‘S'Y i P ‘ip'Q p—.—E‘— E‘— Yoo
[ W {0 LS I gl
- ¢ . — ol p i p i :
Y v v Q -y - - v Y
T 1® PIr T i ! n
Y
Y Tt Y 1 C_
@
Y H
YooY i i Qi p

With the Baseline and Difference solutions defined, we can now proceed to find a numerical
solution to the problem.

2.5.1. Numerical solution for the 2S state
This problem can be solved numerically using the same procedure as we used for the 1S state,

where for 2S we use
T i W,
LI
1 - — p8t prh
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T i C TUIT
1T 1 pomnm
1 Relative tolerance=p8t p T

Starting from initial values of - p8&t p T and Y i T8t 11 Y hit
takes 12 outer-loop iterations to reach a value of - U VT p oY)y myand
Yoo ™ne @p Yufwpith @ o W ww YY N Twith a relative

continuity error of X& p p 1T and acharge error of @& W T p T

The difference wavefunctions and corresponding charge densities are shown in Figure 12.
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Figure 12: Features of the difference wavefunction 'Yc“\Q" h and modified wavefunction

Y i hrelative to the original ground state wavefuncton Y i . (a) Difference

wavefunction 'Yc"\() i Fplotted over the full range computed by the numerical method. (b)

Difference wavefunction Y 1 hx OO001 EwPOwli | wYPEPOP VA WOl wli I wipOw?
in step 5 of the numerical method. (c) Difference wavefunction 'Yc“\Q‘l F‘showing the

continui 0a wET Opi 1 OwOi |1 wOUOI UPEEOW?POUPET » WHRFEMOT | WEOE O
in steps 6 and 7 of the numerical method. Note that there are two crossover points for the

2S state. (d) Difference wavefunction 'YC"\Q‘l near the origin, where the nu merical

?DOUPET »wuPUWYEODPEOWE O wli hisunbt Geficd Zhe puiple doidd Ghe B E 1 » w

is the boundary condition Y Tt —— 8 (e) Reconstructed modified charge densities

Ul OpPOT wUI T wUI UUOUBYT u?4dg@ds vith BYw Ui exeept near the

origin.
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3. The Two -Body Hydrogen Problem ¢ Relativistic Case

3.1. Background
The usual relativistic time -independent Dirac equation for the Hydrogen atom is

@ NH I IR Ty O el wom
where W is the four-component (bi-spinor) wavefunction, the non -commuting matrices are
defined conventionally as

T T T p nm nm nm Q m T p T p T T T
T T p T | nm n Qmn | m T T P i mp T T
mp T n Qmn '’ p T T T’ nmT p 1’
p T QT nmom mT p T T T T T p
The momentum terms are defined as usual: R "©—hn "@—hn "©@—hEis the

energy. The usual assumption is that the nucleus is a horrmoving point charge, which implies
an infinitely heavy nucleus with infinitely high char ge density in zero volume, leading as before
to the central Coulomb potential

Wi

which is obviously singular at the origin.

Following Landau and Lifshitz, after separation of variables

oo %ol PeFobo wm
W i ko Co _ o S
.1 6o P Ql m —bo
where & E -and & ¢E & The radial part of the equation is
I -
i P "o 2o 46 o1 o
i | 200
i 229 Lo 4d o o w
i 200
where
I Q - a p for' Q1 -
- a for' Q1 -

The well-known energy solution is
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O
P
¢ b 0f
where the Fine Structure Constant | is defined as
n P

T“- 900 POFOU WWWTTX T

Landau and Lifshitz provide the full general equations for the normalized radial wavefunction

solutions:
- do 03 &
0 C— — |C=é(;) p i 0
36 P T4 —— ——— | ¢ A
— I O e€If_ plk_i € Op €1If_ pIr_i
- do O3 &
0 C— - - |C=db p c i 0
36 P 14 I f& A
I O €If_ plt_i &€ Op €TIf_ pIE_1
where
- (0]
T}
= 20
[ I
€ ¢ ds
and the normalization conditions are
Qi M 1 Qi p AT A wr | OEIWM-QI p
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3.1.1. 1S%: state

In the particular case of the 1S% ground state where€

phda 1 andQ -, we have te p,

I p, €& T, which leads to
0O, a® p |
Substituting those into the radial equations leads to the full system of equations and boundary
conditions
; p Vp | |
Q. | — - Q. 1 T
€ & ) €
] C. P Vp | |,
Q. | T Q. 1 A T Q. 1 T
Q. b T
Q. Hb 1
Q.1 Qi i Qi p
The ground state radial solutions are
. - —
— Cl 7
Q. i "C' Q C_ P p|—
w ! @ 3p cVp |
| |
"Q | t"g | -"Q |
€ p |/| | € C €
Note that
p Vp |
——— pPIIMTTpY
3p cVp |

BecauseSQi Sis smaller than SQi Sby about a factor of —, or about

the large componenand "Qi

it follows that

, Qi

is often called the small componentNote that since
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i.e., the Dirac radial solution is related to the Schrodinger radial solution in a fairly

n

straightforward way. Bu t since the —

term has a very small negative exponent, the

Dirac radial wavefunction solution is singular at the origin (as pointed out by Darwin in 1928),
unlike the Schrodinger radial equation, which only has a cusp at the origin, as shown i n Figure
15(a). This term also results in a slight shifting of the charge density toward the origin for the
Darwin solution, compared to the Schrodinger solution, as shown in Figure 15(b).

R N [ singularity roote
(a) A (b)
1.000 | SN
SN Electron 1.0008
0999 | /. CUSPLN  charge density
Ve ~>_ Dirac Equation
0.998 Vs RN i 1.0006 |
0.997
S 1.0004 |
0.996 | d "\
// Electron \\
osest /7 charge density "\ 100027
SchrodingeEquation .
0.994 x/ " i \- 17[]E|UE|,,,,,,,,,,”,,,,,,,,_,\—i_ji_”_fi_,fﬁ,—._‘__‘;;,;;;,,_,,;,;,,,,,,,,,,,,,,,,,
o021 10105 w10 O 5 g 4 qg-131 g0 0 121071 z2x107 a0 axioT sxq0M
Figure 15: (a) Electron Charge Density for the Dirac Equation (singular) and
i
Schrodinger Equation (cusp only). (b) Singular term — , Which is

responsible for the slight shifting of the charge density toward the origin for the Dirac
solution, relative to the Schrodinger solution.  This term is greater than 1 for » %T, and

less than 1 for » %T The crossover point at » (%T is marked with the blue dot.

The full solution for the ground state, including the angular bi -spinor components, for the spin-

up and

W

spin-down states, is given by
. e S n
P Q" ct p Vp p o
G | & 3p o I | ‘@ OB+
p Wp | Ao
o —— p
P Q" ct p Vp | Tt i
VGo | & sp cp | Ao
p CVp | M OEL

49



3.1.2. 25Y% state
For the 2SYsstate whereé  Cand & T, we have Q -, ¢ p, |l p, €& P, which leads
to

. s Vp |
O, aw AL
G
Substituting this into the radial equations leads to thefull system of equations and boundary
conditions

o P Vb | |
Q. 1 o S O .1 m
| @ I
o 0
. o P Vb | |
Q. 1 2.1 @ S 0.1 .
l | @ l
o o
Q. b m
Q. b ™
Q. i Q.1 1 Qi p
The 2SY%: state radial solutionsare
i i 4
L S r
¢
i — i Z
“Qe i |\— _p i T F— Q F— r
¢p Vp | cUC® w w
where the[ coefficients are all very nearly equal to unity:
f p | 8o w w dy o
W g W .
i % TBOWWDWOo i S C| | FB par Tt M X
P ¢ cWp | §
I — — P8t Tt Tt TG X
[ p cWp |
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¢ ¢ chp | 3¢ chp |
r — — S—
p Vo I p ¢ cWp | 3P CVp |
U y n
S M s wedex (p ¢ W I [T
T [ p cp | [

3.1.3. 2P state

pgimnmngo

p8t Tt Tt TG ©

For the 2P%state where¢ candd p,wehave Q -, e mll p, & p,whichleads to
e Vp |
0. ab P P
G
Substituting this into the radial equations leads to the full system of equations and boundary
conditions
p_Vp |
» C. r‘yp C | ol
Q. |1 =Q 1 - —7Q 1 T
| | @ |
o o
p Vp |
o 5 P C | Bnn
Q. i k¢ = =i T
| @ |
o o
Q. b 1
Q. Hb 1
Qi Q.1 01 Qi op
The 2P%; state radial solutions are
i — i Z
Qe | \—p j qTr ([;)_ Q (E)_ F
CMow
i — i n
e, i T
¢p W | ¢ W W

where the[ coefficients are all very nearly equal to unity:
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¢ ¢ G cMp | ¢ ¢ chp |

I — PETTI T TT ¢ X
P Wp |
cC ¢Vp | P ¢ ¢Wp | ¢ ¢ cWp |
I — — PEITITITIC P
g p Vip | p chp |
T 3¢ cMp |
[ ——— ———— S PBITITMTIC T
o ¢ cc Ml ¢ ¢ cfp g 2P P

® p ¢ CMp | o "
— ———— PEITTITP
P ¢p | p Vp |

3.2.Relativistic Problem Statement in the General Case
We begin with t he usual relativistic time -independent Dirac equation for the Hydrogen atom:

o] n | n | N T&BU,I‘IF‘—EWOO O wih+%o UJiF\—E%o T

But instead of assuming a Coulomb potential for an infinitely massive nucleus, we now assume
the potential is determined by the effective nuclear charge density from an assumed two -body
effect, which we model as a scaleddown version of the electron charge density, scaled by the
ratio of the masses :

o | ko "Odah-+Hko Q G
7 1 hko

"Oi h—tPbo - ATlOQwé o
" 1 6o I"]‘ g F]—E%OS
Therefore
Gifde A TR g 0 gean
T - D &

And finally we have, in the relativistic case:
@ H 1A AT 60 w iRk
o n ay * h-Hbos
O &

y ATIOQoEDaw ihHeo T
Now we can see that this is a nonlinear integro-differential equation.

T -
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3.3. Modified Potentials

3.3.1. 1S%state

The above singular solutions arise from the Coulomb potential, which is singular at the origin,
coming from the assumption of an unmoving point charge nucleus with infinite charge density
at the origin. Rather than accepting these solutions asa final result, we will treat each one as a
first iteration. Now that we have a first electron wavefunction corresponding to the point charge
nucleus, we can derive an improved, non-singular, nuclear charge distribution, based on a scaled
down and proper ly normalized version of the electron charge distribution from the first iteration
solution above. For example, for the 1S ground state, the normalized nextiteration nuclear
ET EUTT w?PEYI I UOEUDPOOWEOXxOPUUEIT 2 wubhDOOWEI

0 ¢ | NTTR
. . M— < — T[
L o & p_ Vb | P
p WVp | (. Qe
where the proton-to-electron mass ratio* — p P @B Our key assumption is that the
nuclear charge density” 1 PUwUT 1 wUGUEUT woOi wOT 1T wUEEOI EwOUEOI EUW
the unit charge 1, so
el N0 ‘"W e “ 18
L. Qe i Q. i
r] .[H
LA ‘ H |7| A~
S i “
1o 5 b 1 A
® &) 3p cp | p Vp |

where we have taken the sum of the squares of the bispinor components, consistent with the
radial charge normalization condition. Since it can be shown that

p Wp | |
G p Vp |
we have
270 ¢ i jS P oPIS
"ol A_oE 2 AR
Uk Gk 3p cp | ¢

The first step will be to determine the new potential corresponding to this new, smeared -out
nuclear charge distribution. We will address the particular case of the ground state first, before
addressing the general case.

Recall that the potential energy V(r) at distance r from the nucleus is defined as the integral
of the force required to move a test charge from infinity to r:

Wi "0a Q@
For a point charge nucleus, we have™Oi “r"c‘ <, SO it is trivial to show that this leads to the
-4
Coulomb potential. For a general spherical charge distribution ” i , the calculation is more
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involved. Without loss of generality, we can place the test charge on the z axis at position 0
i 5FT[FI'[ . The first step is to find the force acting on the test charge at@ from an infinitesimal
element of the charge distribution ” i located at®d 1 h—ko 8

i h—Fo

Figure 16: Computing the force on a test charge at 0 due to a spherically symmetric
charge distribution " i .

In this case, we have
T - D &
i.e.,the usual P i force law, where the A || Qerm is included because we need onlyinclude the

component in the -z direction, since the perpendicular component of the force will be cancelled

by the charge element on the other side of the z axis atke “ . Eliminating A 1| Gand stating the
volume element dVolexplicitly, we have
n S i AT, . .. o
Ol —_ — — I OB+ Qo Q—Q 8
T - D& D&
The distance between the test charge and the small charge element is
D& cii AT-O1

Substituting ” . 1 and 9 &sinto the expression for "Oi  and performing the integration in
%o gives

-~ C'1 \
- Q o | I Al-©O
0, | LI S w — i OElQ-Q 8
C-®@sp chp | i ci A6 1 -
This integral can be done in closed form (by Mathematica), leading to
-~ C' 1
‘ f spcp e
O€ l “ N p S
-l 3p chp |
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i.e., the usual p‘l force law, with a correction that has an effect only near the origin.

3 p ¢ | h— isthe Upper Incomplete Gamma Function. Performing the final integral

to find the modified potential energy for the 1S state:

leads to

e
A2

o o
where ‘O £¢h) is the Exponential Integral E function . As before, the modified potential energy
@ . 1 looks like the usual Coulomb potential energy w i with a correction that has an effect

only near the origin, as shown in Figure 17(b).

1or Electron
charge densit
” . ‘l
. Nucleus
o3 osr |\ charge density
Nucleus \ i
charge density / €
” ¢ ‘l P
//
0.0 —— 0.0 —
\f‘
| —_— Modified P
T Potential _—
Coulomb N, o1
-05) Potential -05) ¢ s
V() /' Coulomb
) Potential
W@ e e
—2.x10711 _1.x10 M 0 1x10711 2.x107M ~15x107 1 k1075 k107 0 5x10™ 1 x1071 1510713

Figure 17:  First iteration 1S ground state radial wavefunctions and potentials
(wavefunctions on arbitrary unit  scalesto allow them to be plotted together; potentials are

scaled relative to @ TT —— W T). (a) Large spatial scale, showing the

exponentially decaying electron charge density and the steep, singular Co ulomb potential.
(b) Smaller spatial scale, showing the scaled -down nucleus charge density, and the
corresponding modified potential @ . 1 , which is not singular at the origin.

4UDPOT w+z7' GxDPUEOzUw1UOI Owb bwEE GUE misUT OPOwUT EQwUT T w

W, T —
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At the scale shown in Figure 18(a), the charge densities and modified potentials for the Dirac
solution look identical to those for the Schrodinger solution (see Figure 2). A finer comparison of
the modified potentials is given in Figure 18(b).

0.0 @) ' ' ; ; ; 0.00001
Modified (b)
— Potential
-02¢ . 1
T~ Schrodlnger/ 0 _ _
\\ TN //
—04f A\ 1 [ /
N\ \/ Modified i \ /
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_osf /" Dirac 1 /’ Wl @i
"\. f;’ W 1 1
\ ff
_oal \ / —0.00002 -
\ / Coulomb [
\ ,-f Potential
/ I
-1.0r V() —0.00003
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—15x107 31 10735107 0 5107 M1 10731510713 15x 10731075 x10 5.x1071.x 1074 610

Figure 18 (a) Comparison of modified potentials for Dirac and Schrodinger case. On this scale, the two
modified potentials are indistinguishable. Potentials are scaled relative to W T —. (b)

Difference between Dirac and Schrodinger modified pote ntials. The worst -case relative deviation

between the two potentials occurs at the origin at a value of p — TBITITITIG @ @

3.3.2. 2S5V state
For the 2S5 state, the radial wavefunction solutions are

i | Z
e e S r
cUC®
i i N
“Qe i |\ _p i T F— Q F— r
cp WVp | cUC® w w

so the first-iteration nuclear charge density ” . 1 will be
Q. Q. i

SR g - |
e R P R
3 & & cp Wp |
Substituting ” ¢ 1 into the expression for "'Od and performing the integration in %ogives
0. (pnf_ I*(I)
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n‘ll-)

- v | T —

Q T ¢ LT 0 i1 Ai-O

® w cp Vp |
— i OEFLQ-0Q 8
i ¢ii Al 1~
This integral can be done in closed form (by Mathematica), leading to
o~ n rr T
O€ [ .l_u_‘l p C 3 p C p | h w
rr . T [
C ¢ ¢p _w
[T T
30 ¢ p | hT
where
| T | T
I rr v paimnmmmy [ rr Y PEITMTTMTC O
which leads to the modified potential energy for the 2SY:state
o n [T T . | ﬁ‘ ¥
€ .l_u_l p c T(I)r p c p d)
T T 3¢ ¢ o] ﬁ‘ i
q @0 @
[r T - | ﬁ‘ i
v 0o ° P &
i W
o ! S S A
w T » ¢ W
where
of T ™
[ F J L [ PEIMTMTMO P
¢ p clp |
YT W | T
r p&immnmTt O
P o
r rrﬂspcp| %3( ¢ p | r$3crcp| p&Ti MM T80 O
¢ d pcp Wp I | poxVp |
r —— —— —— PETTITTTT @ X
I p Wp | o ¢ oip |
a rl ¢p | T ¢ wp r | T I U o
8t
r dr pl o d a PRLTLTLTLX T
: rri op | o T pcp T X d | pwpob DBLTL T TT W
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At the scale shown in Figure 19(a), the charge densities and modified potentials for the Dirac
solution @ . 1 look identical to those for the Schrodinger solution (see Figure 3). A finer

comparison of the modified potentials is given in Figure 19(b).

0.00 — — — :
(@) 2.x10°8

(b)

e N/

~4.x1076 | \/wE i oo

—6.x1076}

—0.05f

—o010}
—0.15f

—020f

Coulomb

-6
. _8 <1078}
-0.251 Potential *

V()

—0.00001

—0.30k

‘ . e 1013 0 13
51071 0 B.x10°13 210 210

Figure 19 (a) Comparison of modified potentials for Dirac @ . | and Schrodinger
@ 1 case. Onthis scale, the two modified potentials are indistinguishable. Potentials are

scaled relative to @ Tt ——— The unmodified Coulomb potential @ 1 is shown for

reference. (b) Difference between Dirac and Schrodinger modified pote ntials. The worst -
case relative deviation between the two potentials occurs at the origin at a value of  p Lo

T
Ty p

3.4. Energy and Electron Wavefunction for the 1S % state
For the 1SY% state, the next step is to compute the new energy andelectron wavefunction
corresponding to this modified Coulomb potential %\é i . We will first set up the problem,
and then show the various methods we have used to solve the problem.

The energy level of the unmodified 1S% ground state is

0O, 4w p | 8
Note that the relativistic energy includes the rest mass & @ which must be subtracted away
before it can be compared to the nonrelativistic energy. Because we have made a modification to
the potential near the origin, we should expect that there should be a small change in the energy
for a self-consistent wavefunction solution. Let us define the modified energy ‘O . as a tiny

fractional change to the original energy with the rest mass removed:
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T € p P

ad p
With this definition, we can expect an

is a small, dimensionless quantity.

where - .
approximate value of - - Fas in the non-relativis tic case.
Substituting the previous expressions for'O . and w . | leads to the Modified Ground
State Equation (along with its boundary conditions and the charge normalization condition):
Mp | - Np |
Q. | p_7p c P 7P 0 .1 M. i m
| @ i
G . n - n | .
Q. i 270, i PP < P P —0 1 Q. |
l | @ [
¢ e i el ¢ i Y 'Sl
: . S Q ¢k % ¢ 2= % ¢U e .
Wi & @, Vp | @ o cVip | & &
o] [ — AP N S A
€ Wi Wp 1S3 p cp |° v
(o 0
Q. b 1
Q. HBb T
Q. i Q. 1 1 Qi p

« and the wavefunctions

And the challenge is to solve for the fractional energy change -

Q. I and™ Q. 1 8
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3.4.1. Numerical solution for the 1S 4 state
We were not able to find a closed-form Baseline solution, so we must use the more conventional
two -sided shooting method, adapted to the specific needs of the Relativistic case, with the

coupled equations for 'Q, 1 and Q. i , similar to Silbar et al. (2010). The solution will
be determined by - . and the two additional free parameters
oa e Qv laE aee Qv lade
gﬁEoAdQQIgl,‘%“—‘, CAEOADL] %“—
@y g laae Qv laore

For the original Dirac solution,

CAEOAOGET CAOAOET |

p Vp |
Early experiments with the numerical solution of the Modified Ground State equations led
directly to
oA e A |
CAOAOET mh CEAEOAOE] ——
p Vip |
as promising initial values, subject to joint optimization along with - .. This problem can be
solved numerically using the following procedure:

12. Goal of the procedure : The procedure is designed to solve for- ., C £0 A O Ehiand

CEOAOE]T

13. Initialization:  Choose an initial value for -,d, We used p8t p 1. Choose initial
values CZ EOAOET nhC £ZO0AQET —;—  Where we defined i o 1t and
i — . We will also need two midpoints for continuity matching: we used
i ppandi T 118

14.? . U0 b EWEww? ( GhobtiddEmegration s: Define the interval in which to perform
the outward shooting -method integration for i running from i to i . Define the
interval in which to perform the inward shooting -method integration for i running from
i to i . Note that the two integrations overlap on the interval i to i 8The
integrations can be done directly in Mathematica by NDSolve . Each integration will
produce trial wavefunctions Q. 1 and™ Q. i 8

15. Continuity and Charge Normalization Condition: 61 wOOPwWI EYT WwEWUOUDPEOW? OL
?DOPEUE? wOUOI UPEEOwWHOUI TUEUDPOOUWEOOI 6wwb6l wUET
?PDOPEMELIWET Ul 1 UwkpbUT w1 w-Bleiieirittdicaliy compute
U711 weT EUT 1 wOOUOEOPAEUPOOEPOAUDDUBO Gl WDBGDwWOT | w?
Uil T w?DOPEUE> wilOAadiU b kdiuthier) d&euthe composite solution to
normalize the charge. At this point, we have a two -part normalized solution where the
PPOPEUE? w EOEwW ? OUU0 B EU KR wix E URbUt um&y EABtE match  at
Q. i h Q. i hand Q. i 8To match these three additional
conditions, we may need to adjust - .,C A£OA O Ehland C £AO A O Ed

16. Inner Loop lIteration Condition: We defined the difference solutions as the deviation
between the modified solutions and the corresponding original Dirac solution:
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Q. i Q. i Q. 1
and the Error as
%001 OQ . i Q. i
Q. i Q. 1
Q. i Q. i
Pi DEIl wPpDOOWYEODUIT whi 1l OwUI I wE OOUWBDORIWbDEA W@ DRIDH
integrations agree, in both the f and g terms, at both points i and i . Holding

CAOAOET mandC £ZOAOET pconstant, weUUIT Ew, EUT NOsehehdigk U w
the minimum value of Error as a function of - .. We found the Minimum Error of o®& o

pT at- . PR W T X p ©® P ¢xrBSince the value of the Minimum Error is so close

to zero, we concluded that the initial values of C £O0 A O Ednd C £0 A O E heeded no
further modification to find a completely self -consistent solution. We note also that this
value of - . is very close to the value found in the non-relativistic case of -

PP YT O TPXTT .

The original Dirac electron charge density is given by

. . Qi Q.

) € [ n = .l-u - 8

The modified electron charge density is given by

. Qe i Q.

” ¢ l r] T“ 8
The difference electron charge density is given by
” ¢ ‘l ” ¢ ‘l ” ¢ ‘l 8

These chargedensities are shown in Figure 20, illustrating that, relative to the original Dirac
Solution, charge is displaced outward from the origin as in the non -relativistic case, and the
singularity in the Original Dirac charge density is eliminated, in favor of a well-behaved
PUOUOGET EwUOx2 6
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Figure 20: Continuity conditions for the 1S % numerical solution. qEAw? . UUPEUE? wepEOUI A wE
?2( OPEUE» uapl U ldiffe@@icrisolutions, matching at | andi Awhich results

PEAwWw?. UUPEUE? w pEOUT Aw EKQEwW?( OPEUE? w
difference s olutions, matching at i and 1 8 (c) Corresponding Electron charge

density differences from the original Dirac Solution, showing that charge lost near the

origin is displaced outward from the origin, as in the non  -relativistic case. (d) Detailed

view of the Electron charge density deviations from the original Dirac Solution near the

origin. (e) Comparison of the Original Dirac Electron charge density, which has a

singularity at the origin, to the modified charge density, which hastheex x1 EUI Ew? UOUOEI| E w
UO0Ox2 wpDUT wOOwWUDPOT UGOEUDUAB w

in them matching everywhere .

Now that we have seen the numerical solution for the modified 1SY% state, we can use it to guide
us to a good closedform analytic approximation .

3.5. Energy and Electron Wavefunction for the 2SY: state
For the 2S% state, the next step is to compute the new energy and electron wavefunction
corresponding to this modified Coulomb potential Gy~ 1 . We will first set up the problem,
and then show the various methods we have used to solve the problem.

The energy level of the unmodified 2S% ground state is

~ P Vp |
—_— Ao

Note that the relativistic energy includes the rest mass & @ which must be subtracted away
before it can be compared to the nonrelativistic energy. Because we have made anodification to
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the potential near the origin, we should expect that there should be a small change in the energy
for a self-consistent wavefunction solution. Let us define the modified energy O . as a tiny

fractional change to the original energy with the rest mass removed:

0 . O, 4 p - . 4o
. g P Vp | -
ao  p p - O
q
o o
on P VDT G
G o P P - 0 P P
S S
&
dw F T € p F
where - . is a small, dimensionless quantity. With this definition, we can expect an
approximate value of - —Fas in the non-relativistic case.

Substituting the previous expressionsfor'O . and w . 1 leads to the Modified Ground
State Equation (along with its boundary conditions and the charge normalization condition):
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and the challenge is to solve for the fractional energy change - . and the wavefunctions
Q. 1 and™ Q. i 8
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