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1
SYSTEM AND METHOD FOR UTILIZING
INTER-MICROPHONE LEVEL
DIFFERENCES FOR SPEECH
ENHANCEMENT

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the priority and benefit of U.S.
Provisional Patent Application Ser. No. 60/756,826, filed
January 5, 2006, and entitled “Inter-Microphone Level Dif-
ference Suppressor,” which is incorporated herein by refer-
ence.

BACKGROUND OF THE INVENTION

Presently, there are numerous methods for reducing back-
ground noise in speech recordings made in adverse environ-
ments. One such method is to use two or more microphones
on an audio device. These microphones are localized and
allow the device to determine a difference between the micro-
phone signals. For example, due to a space difference
between the microphones, the difference in times of arrival of
the signals from a speech source to the microphones may be
utilized to localize the speech source. Once localized, the
signals can be spatially filtered to suppress the noise originat-
ing from different directions.

Beamforming techniques utilizing a linear array of micro-
phones may create an “acoustic beam” in a direction of the
source, and thus can be used as spatial filters. This method,
however, suffers from many disadvantages. First, it is neces-
sary to identify the direction of the speech source. The time
delay, however, is difficult to estimate due to such factors as
reverberation which may create ambiguous or incorrect infor-
mation. Second, the number of sensors needed to achieve
adequate spatial filtering is generally large (e.g., more than
two). Additionally, if the microphone array is used on a small
device, such as a cellular phone, beamforming is more diffi-
cult at lower frequencies because the distance between the
microphones of the array is small compared to the wave-
length.

Spatial separation and directivity of the microphones pro-
vides not only arrival-time differences but also inter-micro-
phone level differences (ILD) that can be more easily identi-
fied than time differences in some applications. Therefore,
there is a need for a system and method for utilizing ILD for
noise suppression and speech enhancement.

SUMMARY OF THE INVENTION

Embodiments of the present invention overcome or sub-
stantially alleviate prior problems associated with noise sup-
pression and speech enhancement. In general, systems and
methods for utilizing inter-microphone level differences
(ILD) to attenuate noise and enhance speech are provided. In
exemplary embodiments, the ILD is based on energy level
differences.

In exemplary embodiments, energy estimates of acoustic
signals received from a primary microphone and a secondary
microphone are determined for each channel of a cochlea
frequency analyzer for each time frame. The energy estimates
may be based on a current acoustic signal and an energy
estimate ofa previous frame. Based on these energy estimates
the ILD may be calculated.

The ILD information is used to determine time-frequency
components where speech is likely to be present and to derive
a noise estimate from the primary microphone acoustic sig-
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nal. The energy and noise estimates allow a filter estimate to
be derived. In one embodiment, a noise estimate of the acous-
tic signal from the primary microphone is determined based
on minimum statistics of the current energy estimate of the
primary microphone signal and a noise estimate of the previ-
ous frame. In some embodiments, the derived filter estimate
may be smoothed to reduce acoustic artifacts.

The filter estimate is then applied to the cochlea represen-
tation of the acoustic signal from the primary microphone to
generate a speech estimate. The speech estimate is then con-
verted into time domain for output. The conversion may be
performed by applying an inverse frequency transformation
to the speech estimate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a and 15 are diagrams of two environments in which
embodiments of the present invention may be practiced;

FIG. 2 is a block diagram of an exemplary communication
device implementing embodiments of the present invention;

FIG. 3 is ablock diagram of an exemplary audio processing
engine; and

FIG. 4 is a flowchart of an exemplary method for utilizing
inter-microphone level differences to enhance speech.

DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present invention provides exemplary systems and
methods for recording and utilizing inter-microphone level
differences to identify time frequency regions dominated by
speech in order to attenuate background noise and far-field
distractors. Embodiments of the present invention may be
practiced on any communication device that is configured to
receive sound such as, but not limited to, cellular phones,
phone handsets, headsets, and conferencing systems. Advan-
tageously, exemplary embodiments are configured to provide
improved noise suppression on small devices where prior art
microphone arrays will not function well. While embodi-
ments of the present invention will be described in reference
to operation on a cellular phone, the present invention may be
practiced on any communication device.

Referring to FIG. 1a and 1b, environments in which
embodiments of the present invention may be practiced are
shown. A user provides an audio (speech) source 102 to a
communication device 104. The communication device 104
comprises at least two microphones: a primary microphone
106 relative to the audio source 102 and a secondary micro-
phone 108 located a distance away from the primary micro-
phone 106. In exemplary embodiments, the microphones 106
and 108 are omni-directional microphones. Alternative
embodiments may utilize other forms of microphones or
acoustic sensors.

While the microphones 106 and 108 receive sound infor-
mation from the speech source 102, the microphones 106 and
108 also pick up noise 110. While the noise 110 is shown
coming from a single location, the noise may comprise any
sounds from one or more locations different than the speech
and may include reverberations and echoes.

Embodiments of the present invention exploit level differ-
ences (e.g., energy differences) between the two microphones
106 and 108 independent of how the level differences are
obtained. In FIG. 1a because the primary microphone 106 is
much closer to the speech source 102 than the secondary
microphone 108, the intensity level is higher for the primary
microphone 106 resulting in a larger energy level during a
speech/voice segment. In FIG. 1b, because directional
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response of the primary microphone 106 is highest in the
direction of the speech source 102 and directional response of
the secondary microphone 108 is lower in the direction of the
speech source 102, the level difference is highest in the direc-
tion of the speech source 102 and lower elsewhere.

The level differences may then be used to discriminate
speech and noise in the time-frequency domain. Further
embodiments may use a combination of energy level difter-
ence and time delays to discriminate speech. Based on bin-
aural cue decoding, speech signal extraction or speech
enhancement may be performed.

Referring now to FIG. 2, the exemplary communication
device 104 is shown in more detail. The exemplary commu-
nication device 200 is an audio receiving device that com-
prises a processor 202, the primary microphone 106, the
secondary microphone 108, an audio processing engine 204,
and an output device 206. The communication device 104
may comprise further components necessary for communi-
cation device 104 operation, but not related to noise suppres-
sion or speech enhancement. The audio processing engine
204 will be discussed in more details in connection with FIG.
3.

As previously discussed, the primary and secondary micro-
phones 106 and 108, respectively, are spaced a distance apart
in order to allow for an energy level difference between them.
It should be noted that the microphones 106 and 108 may
comprise any type of acoustic receiving device or sensor, and
may be omni-directional, unidirectional, or have other direc-
tional characteristics or polar patters. Once received by the
microphones 106 and 108, the acoustic signals are converted
by an analog-to-digital converter (not shown) into digital
signals for processing in accordance with some embodi-
ments. In order to differentiate the acoustic signals, the acous-
tic signal received by the primary microphone 106 is herein
referred to as the primary acoustic signal, while the acoustic
signal received by the secondary microphone 108 is herein
referred to as the secondary acoustic signal.

The output device 206 is any device which provides an
audio output to the user. For example, the output device 206
may be an earpiece of a headset or handset, or a speaker on a
conferencing device.

FIG. 3 is a detailed block diagram of the exemplary audio
processing engine 204, according to one embodiment of the
present invention. In one embodiment, the acoustic signals
(ie., X, and X,) received from the primary and secondary
microphones 106 and 108 (FIG. 2) are converted to digital
signals and forwarded to a frequency analysis module 302. In
one embodiment, the frequency analysis module 302 takes
the acoustic signals and mimics a cochlea implementation
(i.e., cochlea domain) using a filter bank. Alternatively, other
filter banks such as short-time Fourier transform (STFT),
sub-band filter banks, modulated complex lapped transforms,
wavelets, etc. can be used for the frequency analysis and
synthesis. Because most sounds (e.g., acoustic signal) are
complex and comprise more than one frequency, a sub-band
analysis on the acoustic signal determines what individual
frequencies are present in the complex acoustic signal during
a frame (i.e., a predetermined period of time). In one embodi-
ment, the frame is 4ms long.

Once the frequencies are determined, the signals are for-
warded to an energy module 304 which computes energy
level estimates during an interval of time. The energy estimate
may be based on bandwidth of the cochlea channel and the
acoustic signal. The exemplary energy module 304 is a com-
ponent which, in some embodiments, can be represented
mathematically. Thus, the energy level of the acoustic signal
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received at the primary microphone 106 may be approxi-
mated, in one embodiment, by the following equation

E (t,0)=0z X, (£,0) P+(1-Dg)E (- 1,00)

where A is a number between zero and one that determines
an averaging time constant, X, (t,w) is the acoustic signal of
the primary microphone 106 in the cochlea domain, wrepre-
sents the frequency, and t represents time. As shown, a present
energy level of the primary microphone 106, E,(t,®), is
dependent upon a previous energy level of the primary micro-
phone 106, E, (t-1,w). In some other embodiments, the value
of'A; can be different for different frequency channels. Given
a desired time constant T (e.g., 4 ms) and the sampling fre-
quency f(e.g. 16 kHz), the value of Az can be approximated
as

!
Ap=1l-e T

The energy level of the acoustic signal received from the
secondary microphone 108 may be approximated by a similar
exemplary equation

E5(1,0)=hz X (1,0) P+(1-hg) E5(1-1,0)

where X,(t,w) is the acoustic signal of the secondary micro-
phone 108 in the cochlea domain. Similar to the calculation of
energy level for the primary microphone 106, energy level for
the secondary microphone 108, E,(t, w), is dependent upon a
previous energy level of the secondary microphone 108, E,(t-
1, w).

Given the calculated energy levels, an inter-microphone
level difference (ILD) may be determined by an ILD module
306. The ILD module 306 is a component which may be
approximated mathematically, in one embodiment, as

E(1, wE (1, w)

LD, w)y=|1-2—4——F—"—
) EL(r, 0) + B3 (1, )

=sign(E (7, w) — Ex (1, ©))

where E, is the energy level of the primary microphone 106
and E, is the energy level of the secondary microphone 108,
both of which are obtained from the energy module 304. This
equation provides a bounded result between -1 and 1. For
example, ILD goes to 1 when the E, goes to 0, and ILD goes
to -1 whenE, goesto 0. Thus, when the speech source is close
to the primary microphone 106 and there is no noise, ILD=1,
but as more noise is added, the ILD will change. Further, as
more noise is picked up by both of the microphones 106 and
108, it becomes more difficult to discriminate speech from
noise.

The above equation is desirable over an ILD calculated via
a ratio of the energy levels, such as

_E(w
T B w)

ILD(t, w)

where ILD is not bounded and may go to infinity as the energy
level of the primary microphone gets smaller.

In an alternative embodiment, the IL.D may be approxi-
mated by

E@ w)-E (1, w)

bt o) = g T hw o)

Here, the ILD calculation is also bounded between -1 and 1.
Therefore, this alternative ILD calculation may be used in one
embodiment of the present invention.
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According to an exemplary embodiment of the present
invention, a Wiener filter is used to suppress noise/enhance
speech. In order to derive a Wiener filter estimate, however,
specific inputs are required. These inputs comprise a power
spectral density of noise and a power spectral density of the
source signal. As such, a noise estimate module 308 may be
provided to determine a noise estimate for the acoustic sig-
nals.

According to exemplary embodiments, the noise estimate
module 308 attempts to estimate the noise components in the
microphone signals. In exemplary embodiments, the noise
estimate is based only on the acoustic signal received by the
primary microphone 106. The exemplary noise estimate
module 308 is a component which can be approximated
mathematically by

N(t,0)=h{t,0)E | (t,0)+
(1-N{t,0))min[N(z-1,w),E | (2,0)]

according to one embodiment of the present invention. As
shown, the noise estimate in this embodiment is based on
minimum statistics of a current energy estimate of the pri-
mary microphone 106, E,(t,») and a noise estimate of a
previous time frame, N(t-1,m). Therefore the noise estima-
tion is performed efficiently and with low latency.

At,w) in the above equation is derived from the ILD
approximated by the ILD module 306, as

=~ 0 if ILD(1, w) < threshold

A4z, =
1t @) {::1 if ILD{, ) > threshold

That is, when speech at the primary microphone 106 is
smaller than a threshold value (e.g., threshold=0.5) above
which speech is expected to be, A, is small, and thus the noise
estimator follows the noise closely. When ILD starts to rise
(e.g., because speech is detected), however, A, increases. As a
result, the noise estimate module 308 slows down the noise
estimation process and the speech energy does not contribute
significantly to the final noise estimate. Therefore, exemplary
embodiments of the present invention may use a combination
of minimum statistics and voice activity detection to deter-
mine the noise estimate.

A filter module 310 then derives a filter estimate based on
the noise estimate. In one embodiment, the filter is a Wiener
filter. Alternative embodiments may contemplate other filters.
Accordingly, the Wiener filter approximation may be
approximated, according to one embodiment, as

where P, is a power spectral density of speech and P, is a
power spectral density of noise. According to one embodi-
ment, P, is the noise estimate, N(t,m), which is calculated by
the noise estimate module 308. In an exemplary embodiment,
P=E,(t,m) —,pN(t,m), where E, (t,w) is the energy estimate of
the primary microphone 106 from the energy module 304,
and N(t,w) is the noise estimate provided by the noise esti-
mate module 308. Because the noise estimate changes with
each frame, the filter estimate will also change with each
frame.

[ is an over-subtraction term which is a function of the ILD.
[ compensates bias of minimum statistics of the noise esti-
mate module 308 and forms a perceptual weighting. Because
time constants are different, the bias will be different between
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portions of pure noise and portions of noise and speech.
Therefore, in some embodiments, compensation for this bias
may be necessary. In exemplary embodiments, § is deter-
mined empirically (e.g., 2-3 dB at a large ILD, and is 6-9 dB
ata low ILD).

a in the above exemplary Wiener filter equation is a factor
which further suppresses the noise estimate. o can be any
positive value. In one embodiment, nonlinear expansion may
be obtained by setting o to 2. According to exemplary
embodiments, o is determined empirically and applied when
a body of

falls below a prescribed value (e.g., 12 dB down from the
maximum possible value of W, which is unity).

Because the Wiener filter estimation may change quickly
(e.g., from one frame to the next frame) and noise and speech
estimates can vary greatly between each frame, application of
the Wiener filter estimate, as is, may result in artifacts (e.g.,
discontinuities, blips, transients, etc.). Therefore, an optional
filter smoothing module 312 is provided to smooth the Wiener
filter estimate applied to the acoustic signals as a function of
time. In one embodiment, the filter smoothing module 312
may be mathematically approximated as

M(t,0)=h(t,0) #(t,0)+(1-A(t,0)M(t-1,0),

where A, is a function of the Wiener filter estimate and the
primary microphone energy, E .

As shown, the filter smoothing module 312, at time (t) will
smooth the Wiener filter estimate using the values of the
smoothed Wiener filter estimate from the previous frame at
time (t-1). In order to allow for quick response to the acoustic
signal changing quickly, the filter smoothing module 312
performs less smoothing on quick changing signals, and more
smoothing on slower changing signals. This is accomplished
by varying the value of A, according to a weighed first order
derivative of E, with respect to time. If the first order deriva-
tive is large and the energy change is large, then A, is setto a
large value. If the derivative is small then A, is set to a smaller
value.

After smoothing by the filter smoothing module 312, the
primary acoustic signal is multiplied by the smoothed Wiener
filter estimate to estimate the speech. In the above Wiener
filter embodiment, the speech estimate is approximated by S
(t,w)=X, (t,w)*M (1, ), where X, is the acoustic signal from
the primary microphone 106. In exemplary embodiments, the
speech estimation occurs in a masking module 314.

Next, the speech estimate is converted back into time
domain from the cochlea domain. The conversion comprises
taking the speech estimate, S (t, »), and multiplying this with
an inverse frequency of the cochlea channels in a frequency
synthesis module 316. Once conversion is completed, the
signal is output to user.

It should be noted that the system architecture of the audio
processing engine 204 of FIG. 3 is exemplary. Alternative
embodiments may comprise more components, less compo-
nents, or equivalent components and still be within the scope
of'embodiments of the present invention. Various modules of
the audio processing engine 208 may be combined into a
single module. For example, the functionalities of the fre-
quency analysis module 302 and energy module 304 may be
combined into a single module. Furthermore, the functions of
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the ILD module 306 may be combined with the functions of
the energy module 304 alone, or in combination with the
frequency analysis module 302. As a further example, the
functionality of the filter module 310 may be combined with
the functionality of the filter smoothing module 312.

Referring now to FIG. 4, a flowchart 400 of an exemplary
method for noise suppression utilizing inter-microphone
level differences is shown. In step 402, audio signals are
received by a primary microphone 106 and a secondary
microphone 108 (FIG. 2). In exemplary embodiments, the
acoustic signals are converted to digital format for process-
ing.

Frequency analysis is then performed on the acoustic sig-
nals by the frequency analysis module 302 (FIG. 3) in step
404. According to one embodiment, the frequency analysis
module 302 utilizes a filter bank to determine individual
frequencies present in the complex acoustic signal.

In step 406, energy estimates for acoustic signals received
at both the primary and secondary microphones 106 and 108
are computed. In one embodiment, the energy estimates are
determined by an energy module 304 (FIG. 3). The exemplary
energy module 304 utilizes a present acoustic signal and a
previously calculated energy estimate to determine the
present energy estimate.

Once the energy estimates are calculated, inter-micro-
phone level differences (ILD) are computed in step 408. In
one embodiment, the ILD is calculated based on the energy
estimates of both the primary and secondary acoustic signals.
In exemplary embodiments, the ILD is computed by the ILD
module 306 (FIG. 3).

Based onthe calculated ILD, noise is estimated in step 410.
According to embodiments of the present invention, the noise
estimate is based only on the acoustic signal received at the
primary microphone 106. The noise estimate may be based on
the present energy estimate of the acoustic signal from the
primary microphone 106 and a previously computed noise
estimate. In determining the noise estimate, the noise estima-
tion is frozen or slowed down when the ILD increases,
according to exemplary embodiments of the present inven-
tion.

Instep 412, a filter estimate is computed by the filter mod-
ule 310 (FIG. 3). In one embodiment, the filter used in the
audio processing engine 204 (FIG. 3) is a Wiener filter. Once
the filter estimate is determined, the filter estimate may be
smoothed in step 414. Smoothing prevents fast fluctuations
which may create audio artifacts. The smoothed filter esti-
mate is applied to the acoustic signal from the primary micro-
phone 106 in step 416 to generate a speech estimate.

In step 418, the speech estimate is converted back to the
time domain. Exemplary conversion techniques apply an
inverse frequency of the cochlea channel to the speech esti-
mate. Once the speech estimate is converted, the audio signal
may now be output to the user in step 420. In some embodi-
ments, the digital acoustic signal is converted to an analog
signal for output. The output may be via a speaker, earpieces,
or other similar devices.

The above-described modules can be comprised of instruc-
tions that are stored on storage media. The instructions can be
retrieved and executed by the processor 202 (FIG. 2). Some
examples of instructions include software, program code, and
firmware. Some examples of storage media comprise
memory devices and integrated circuits. The instructions are
operational when executed by the processor 202 to direct the
processor 202 to operate in accordance with embodiments of
the present invention. Those skilled in the art are familiar with
instructions, processor(s), and storage media.
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The present invention is described above with reference to
exemplary embodiments. It will be apparent to those skilled
in the art that various modifications may be made and other
embodiments can be used without departing from the broader
scope of the present invention. Therefore, these and other
variations upon the exemplary embodiments are intended to
be covered by the present invention.

What is claimed is:

1. A method for enhancing speech, comprising:

receiving a primary acoustic signal at a primary micro-

phone and a secondary acoustic signal at a secondary
microphone;

executing an audio processing engine by a processor to

perform frequency analysis on the received acoustic sig-
nals to generate a primary acoustic spectrum signal and
a secondary acoustic spectrum signal, the primary
acoustic spectrum signal and the secondary acoustic
spectrum signal each comprising a plurality of sub-
bands;

determining a filter estimate for each of the plurality of

sub-bands of the primary acoustic spectrum signal dur-

ing a frame, the filter estimate for each sub-band based

on:

(1) a noise estimate for the particular sub-band of the
primary acoustic spectrum signal;

(ii) an energy estimate for the particular sub-band of the
primary acoustic spectrum signal; and

(iii) an inter-microphone level difference for the particu-
lar sub-band, the inter-microphone level difference
for the particular sub-band being based on the energy
estimate for the particular sub-band of the primary
acoustic spectrum signal and an energy estimate for
the particular sub-band of the secondary acoustic
spectrum signal; and

applying the filter estimate for the particular sub-band of

the primary acoustic spectrum signal to the correspond-
ing sub-band of the primary acoustic spectrum signal to
produce a speech estimate.

2. The method of claim 1 wherein the energy estimate for
the particular sub-band of the primary acoustic spectrum
signal is approximated as E, (t, 0)=AzI X, (t,0)I*+(1-A,)E, (t-
1, w).

3. The method of claim 1 wherein the energy estimate for
the particular sub-band of the secondary acoustic spectrum
signal is approximated as B, (t, 0)=A 41 X,(t,0)1*4+(1-A ) B, (t-
1, w).

4. The method of claim 1 wherein the inter-microphone
level difference is approximated by

E(1, wE (1, w)

LD, w)y=|1-2—4——F—"—
) EL(r, 0) + B3 (1, )

=sign(F) (1, w) — Ex(t, w)).

5. The method of claim 1 wherein the inter-microphone
level difference is approximated by

Bt 0)-E ()

LDt o) = T B o

6. The method of claim 1 wherein the noise estimate is
based on an energy estimate of the primary acoustic spectrum
signal and the inter-microphone level difference for the par-
ticular sub-band.
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7. The method of claim 6 wherein the noise estimate is
approximated as N(t, )=k, (t, ®)E, (t, ®)+(1-A,(t, ®))min[N
(-1, o), E(t, w)].

8. The method of claim 1 further comprising smoothing the
filter estimate prior to applying the filter estimate to the pri-
mary acoustic spectrum signal.

9. The method of claim 8 wherein the smoothing is
approximated as M(t,w)=A (t,w)W(t, w)+(1-A(t,0))M(t-1,
).

10. The method of claim 1 further comprising converting
the speech estimate to a time domain.

11. The method of claim 1 further comprising outputting
the speech estimate to a user.

12. The method of claim 1 wherein the filter estimate is
based on a Wiener filter.

13. A system for enhancing speech on a device, compris-
ing:

a primary microphone configured to receive a primary

acoustic signal;

a secondary microphone located a distance away from the
primary microphone and configured to receive a second-
ary acoustic signal; and

an audio processing engine configured to enhance speech
received at the primary microphone, the audio process-
ing engine comprising:

a frequency analysis module configured to perform fre-
quency analysis on the received acoustic signals to
generate a primary acoustic spectrum signal and a
secondary acoustic spectrum signal, the primary
acoustic spectrum signal and the secondary acoustic
spectrum signal each comprising a plurality of sub-
bands;

anoise estimate module configured to determine a noise
estimate for each of the plurality of sub-bands of the
primary acoustic spectrum signal based on an energy
estimate for each corresponding sub-band of the pri-
mary acoustic spectrum signal and an inter-micro-
phone level difference for each corresponding sub-
band, the inter-microphone level difference for each
corresponding sub-band based on the energy estimate
for each corresponding sub-band of the primary
acoustic spectrum signal and an energy estimate for
each corresponding sub-band of the secondary acous-
tic spectrum signal; and

a filter module configured to determine a filter estimate
for each of the plurality of sub-bands of the primary
acoustic spectrum signal to be applied to the primary
acoustic spectrum signal to generate a filtered acous-
tic signal, the filter estimate for each corresponding
sub-band based on

(1) the noise estimate for each corresponding sub-band
of the primary acoustic spectrum signal;

(ii) the energy estimate for each corresponding sub-band
of the primary acoustic spectrum signal; and

(iii) the inter-microphone level difference for each cor-
responding sub-band.

14. The system of claim 13 wherein the audio processing
engine further comprises an inter-microphone level differ-
ence module configured to determine the inter-microphone
level difference.

15. The system of claim 13 wherein the audio processing
engine further comprises a filter smoothing module config-
ured to smooth the filter estimate prior to applying the filter
estimate to the primary acoustic spectrum signal.

16. The system of claim 13 wherein the audio processing
engine further comprises a masking module configured to
determine the speech estimate.
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17. A non-transitory computer readable medium having
embodied thereon a program, the program being executable
by a machine to perform a method for enhancing speech on a
device, the method comprising:

receiving a primary acoustic signal at a primary micro-

phone and a secondary acoustic signal at a secondary

microphone;

performing frequency analysis to generate a primary

acoustic spectrum signal and a secondary acoustic spec-

trum signal, the primary acoustic spectrum signal and
the secondary acoustic spectrum signal each comprising

a plurality of sub-bands;

determining an energy estimate for each of the plurality of

sub-bands over a frame for each of the acoustic spectrum

signals;

using the energy estimates to determine an inter-micro-

phone level difference for each of the plurality of sub-

bands of the primary acoustic spectrum signal for the
frame, the inter-microphone level difference for each of
the plurality of sub-bands of the primary acoustic spec-
trum signal based on the energy estimate for the corre-
sponding sub-band of the primary acoustic spectrum
signal and an energy estimate for the corresponding
sub-band of the secondary acoustic spectrum signal;

generating a noise estimate for each of the plurality of
sub-bands of the primary acoustic spectrum signal based
on the energy estimate for the corresponding sub-band
of the primary acoustic spectrum signal and the inter-
microphone level difference for the corresponding sub-
band;

calculating a filter estimate for each of the plurality of

sub-bands of the primary acoustic spectrum signal based

on:

(1) the noise estimate for the corresponding sub-band;

(ii) the energy estimate for the corresponding sub-band
of the primary acoustic spectrum signal; and

(iii) the inter-microphone level difference for the corre-
sponding sub-band; and

applying the filter estimate for each of the plurality of

sub-bands of the primary acoustic spectrum signal to the

corresponding sub-band of the primary acoustic spec-
trum signal to produce a speech estimate.

18. A method for enhancing speech, comprising:

receiving a primary acoustic signal at a primary micro-

phone and a secondary acoustic signal at a secondary
microphone;

executing an audio processing engine by a processor to

perform frequency analysis on the received acoustic sig-

nals to generate a primary acoustic spectrum signal and

a secondary acoustic spectrum signal, the primary

acoustic spectrum signal and the secondary acoustic

spectrum signal each comprising a plurality of sub-
bands;

determining a filter estimate for each of the plurality of

sub-bands of the primary acoustic spectrum signal dur-

ing a frame, the filter estimate for a particular sub-band
based on:

(1) an inter-microphone level difference for the particu-
lar sub-band, the inter-microphone level difference
for the particular sub-band being based on an energy
estimate for the particular sub-band of the primary
acoustic spectrum signal and an energy estimate for
the particular sub-band of the secondary acoustic
spectrum signal;

(i1) a noise estimate for the particular sub-band of the
primary acoustic spectrum signal, the noise estimate
being separately based on the energy estimate for the
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particular sub-band of the primary acoustic spectrum 19. The method of claim 18 further comprising smoothing
signal and separately based on the inter-microphone the filter estimate prior to applying the filter estimate to the
level difference for the particular sub-band; and primary acoustic spectrum signal.

20. The method of claim 18 further comprising converting
5 the speech estimate to a time domain.

. . . 21. The method of claim 18 further comprising outputting
applying the filter estimate for the particular sub-band to the speech estimate to a user.

the corresponding sub-band of the primary acoustic
spectrum signal to produce a speech estimate. I T S

(iii) the energy estimate for the particular sub-band of
the primary acoustic spectrum signal; and



