
DeepPitch:  Wide-Range Monophonic Pitch Estimation 
using Deep Convolutional Neural Networks 

 
Lloyd Watts 

June 14, 2018 
 
 

Abstract – Pitch Estimation is an important problem in Machine Hearing, with 
application in Music Information Retrieval, Speech Analysis, and Auditory Scene 
Analysis.  In this paper, we propose DeepPitch, a Deep Convolutional Neural Network 
(DCNN) approach that operates on a high-resolution log-frequency spectrum (9 
taps/semitone), with one DCNN operating as a binary Pitch Activity Detector, and 
another DCNN estimating the Pitch Value at 9 taps/semitone resolution.  Most Pitch 
Estimation algorithms such as pYIN, CREPE, RAPT, etc., use a restricted range of output 
pitch values, compared to the wide range of human pitch perception.  DeepPitch was 
designed to cover a wide pitch range of 27.5 Hz to 4.186 kHz, corresponding to the full 
range of a piano.  The training and test data are based on a 107-minute set of 44.1 kHz 
audio samples including speech (male, female, child), musical instruments (piano, 
guitar, bass, violin), synthetic test signals (sine waves, missing fundamental examples, 
sirens), and bandlimited speech and piano.  Performance of the algorithm is 99.75% 
accuracy on Pitch Activity Detection, 96.92% on Pitch Value.  

 
 

1.  Introduction 

Pitch Estimation, or fundamental frequency (f0) estimation, of a monophonic audio signal is an important 

problem in Music Information Retrieval [1, 2, 3], Speech Analysis [4], and Auditory Scene Analysis [5], and 

monophonic Pitch Estimation is a necessary prerequisite for the development of polyphonic Pitch 

Estimation.  Many front-end signal representations have been used in many different Pitch Estimation 

algorithms, including linear-frequency spectral frames (used by harmonic sieve methods [6, 7]), cepstrum 

[8], autocorrelation function (ACF) [9], average magnitude difference function (AMDF) [10], normalized 

cross-correlation function (NCCF, used by RAPT [11] and PRAAT [12]), and cumulative mean normalized 

difference function (CMNDF, used by YIN [13] and pYIN [14]), cochlear model [15], and waveform samples 

(used by CREPE [16]).   

In this paper, we present DeepPitch, a monophonic Pitch Estimation method using a high-resolution log-

frequency spectrum as the front-end signal representation, and two Deep Convolution Neural Networks 

(DCNNs), one for Pitch Activity Detection, and one for Pitch Value Estimation.  The inputs and the outputs 

of the Pitch Estimation DCNN are on the same high-resolution log-frequency scale (9 taps/semitone), so 

the DCNN has a direct mapping from inputs to outputs, and a translation-invariant convolutional approach 

is a natural fit to the harmonic comb patterns which regularly appear in the spectral inputs.  The training 

data was chosen to adapt the system to a broad set of stimuli, covering the full 27.5 Hz to 4.186 kHz range 

of a piano:  speech (male, female, child), musical instruments (piano, bass, guitar, violin), synthetic test 

signals (sine waves, missing fundamental examples, sirens), and bandlimited speech and piano. 

 



2.  Architecture 

The DeepPitch architecture is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  The DeepPitch Architecture. 

The input to the system is a frame of 4096 Audio Samples, sampled at 44.1 kHz sampling rate, and hopped 

by 441 samples, for a frame rate of 100Hz.  This frame of samples is processed by a Blackman-Harris 

Window and a 4096-point FFT, leading to a 2048-point magnitude spectrum on a linear frequency scale 

from 0 to 22.1 kHz.    The 1044-point Log-Frequency spectrum is computed by resampling the linear-

frequency spectrum using cubic interpolation onto a log-frequency scale from 27.5 Hz to 22.1 kHz, at a 

resolution of 9 taps/semitone. 

The Pitch Activity Detector DCNN consists of two convolutional layers and two fully connected layers.  The 
first convolutional layer uses 16 1-dimensional kernels of size 108 frequency values (spanning one octave 
= 12 semitones x 9 taps/semitone).  This convolution operates on the 1044 frequency values and produces 
16x1044 outputs, which are then rectified (Rectified Linear Units, or RELU) and max-pooled by 2 down to 
16x522.  The second convolutional layer uses 4 2-dimensional kernels of size 16x108 (spanning two 
octaves, because of the previous pooling).  This convolution produces 4x522 outputs, which are then 
rectified (RELU) and max-pooled by 2 down to 4x261, and then flattened to 1044 outputs.  The third layer 
is fully connected with 1044 inputs and 256 rectified (RELU) outputs, and is followed by a dropout layer 
[17] with dropout probability 0.5.  The fourth layer is fully connected with 256 inputs and 2 outputs, with 
no rectification, and a SoftMax, representing a binary Pitch Activity Detection.    
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The Pitch Value Estimator DCNN consists of two convolutional layers and two fully connected layers.  The 

first convolutional layer uses 16 1-dimensional kernels of size 108 frequency values (spanning one octave 

= 12 semitones x 9 taps/semitone).  This convolution operates on the 1044 frequency values and produces 

16x1044 outputs, which are then rectified (RELU) and max-pooled by 2 down to 16x522.  The second 

convolutional layer uses 4 2-dimensional kernels of size 16x108 (spanning two octaves, because of the 

previous pooling).  This convolution produces 4x522 outputs, which are then rectified (RELU) and max-

pooled by 2 down to 4x261, and then flattened to 1044 outputs.  The third layer is fully connected with 

1044 inputs and 256 rectified linear (RELU) outputs, and is followed by a dropout layer with dropout 

probability 0.5.  The fourth layer is fully connected with 256 inputs and 793 outputs, with no rectification, 

and a SoftMax, representing a probability distribution of 793 candidate pitch values, covering the 88-

semitone range of a piano at 9 taps/semitone (plus one unused tap).   

Both networks are trained to minimize the binary cross entropy between the target vector and the 
predicted vector.  This loss function is optimized using the ADAM optimizer [18], with learning rate 0.0001. 
The best performing model is selected after training until the validation accuracy no longer improves.  This 
architecture and the training procedures are implemented using TensorFlow [19]. 
 

3.  Experiments 

3.1.  Data Sets 

The Core Data Set is 8 minutes and 40.04 seconds (520.04 seconds) of audio, or 52004 frames at 100 

frames/second.  As shown in Figure 2, the audio contains speech (male, female, child), full scales played 

on musical instruments (piano, guitar, bass, violin), sine wave scale, test signals (missing fundamentals, 

sirens), stressed speech, bandlimited speech, and bandlimited piano notes from low register.  The ground 

truth targets for the speech samples were produced using get_f0 (RAPT) from WaveSurfer software [20], 

and then manually corrected where obvious octave errors had occurred.  The ground truth targets for the 

musical instruments were generated along with the data using a custom MIDI data set.  The audio signals 

and ground truth targets for the sine wave scale and test signals were produced using custom 

Mathematica software.  The ground truth target pitch values are shown in green in Figure 1.  Note that 

the pitch values for the musical scales are active at every musical semitone (i.e. chromatic scales, standard 

A440 tuning), and the pitch values for the missing fundamental samples were created at every 6 

semitones. 

This Core Data Set was originally intended as a test set for a hand-crafted pitch estimation algorithm.  It 

is inadequate for use as a training/validation/test set for a Machine Learning algorithm because of its very 

irregular histogram of target values, as shown in Figure 3(a).  In that histogram, the distributions of the 

Speech samples, musical instruments (spikes every semitone), and missing fundamental samples (spikes 

every 6 semitones) can easily be seen.  To rectify this problem, an Extended Data Set was created by pitch-

shifting the speech and musical instrument log-frequency spectral values through a range of  ±4 frequency 

taps (±½ semitone at 9 taps/semitone), and similarly pitch-shifting the missing fundamental values 

through a range of ±27 frequency taps (±3 semitones at 9 taps/semitone), thus filling in the unrepresented 

frequency taps.  The Extended Data Set is 643,480 frames long, representing 6,434.8 seconds of audio, or 

107.25 minutes.  The improved histogram of the Extended Data Set is shown in Figure 3(b). 



 

Figure 2:  The Core Data Set (520 seconds). 

 

 
 

Figure 3:  Pitch Target Value Histograms. 

                  Speech                       piano        guitar    bass   violin       sine waves       test sig.         speech       bandlimited  

                     (a) Core Data Set                                                                (b) Extended Data Set 

Musical notes 

Missing Fundamentals 

Speech 



The Pitch Estimator was trained only on frames which were classified as pitched in the ground truth data.  

This subset of the Extended Data Set contained 510,849 frames, representing 5,108.5 seconds of audio, 

or 85.14 minutes.   

3.2.  Methodology 

We trained the model using a simple 70/10/20 train/validation/test split.  During training, a pitch estimate 
was considered correct if it exactly matched the target pitch at 9 taps/semitone resolution (11 cent 
accuracy).  We trained the networks until the accuracy on the Validation Set stopped improving.  For 
evaluation of the performance of the pitch estimator, an estimate was considered correct if it matched 
the target pitch within ±4 frequency taps (± ½ semitone at 9 taps/semitone, or ± 50 cents).   

Once we had established good performance of the network, we did some moderate hyper-parameter 
tuning, decreasing the number of neurons in each layer to find a reduced-complexity solution with very 
little degradation in performance.  The reported configuration is the result of this complexity reduction.  
Quadrupling the number of neurons in each layer relative to the reported configuration improves the 
accuracy by about 0.1%. 

3.3.  Results 

The accuracy of the Pitch Activity Detector on the Test Set was 99.75%.  The accuracy of the Pitch 

Estimator on the Test Set was 96.92%.    

An example of an output of the DeepPitch algorithm on a male speech sample is shown in Figure 4.  Figure 

5 shows the DeepPitch output on the full Core Data Set. 

 

4.  Discussion and Conclusions  

In this paper, we presented DeepPitch, a Deep Convolutional Neural Network architecture for 
monophonic pitch estimation operating on log-frequency spectral inputs.  The parameters of the design 
and the data set used for training and testing were chosen to match the broad capabilities of the Human 
Auditory Pathway, i.e. wide input frequency range (20Hz-22kHz), wide output pitch range (27.5Hz-
4.186kHz), high output pitch resolution on logarithmic frequency scale (9 taps/semitone), and to be able 
to handle a wide range of input signal types (male, female and child speech, musical instruments with 
wide pitch ranges, test signals (sine waves, missing fundamental examples, sirens), stressed speech, and 
bandlimited speech and musical instruments.  Most pitch algorithms are designed for, and tested on, 
specialized subsets of those signal types (e.g., adult speech only (RAPT) [11], or synthesized musical 
instruments only (CREPE) [16]). 
 
DeepPitch also is designed to work only on the current frame of audio data, which means that it is a low-
latency design, compared to other algorithms such as pYIN [14] and RAPT [11], which use Hidden Markov 
Models with Viterbi Decoding to provide smoothed pitch tracks, but at the cost of large and variable 
decoding latency. 
 
We see DeepPitch as a foundational component in a Machine Hearing system modeled on the Human 
Auditory Pathway as described by Watts [21].  In this architecture, the inputs to the Pitch Estimator are 
the log-frequency-scale spectral energies (from the Cochlea and MultiPolar Cells), and this log-frequency 
spectral representation is preserved throughout the higher stages of the Human Auditory Pathway – this 



is one reason why it was important to use a log-frequency spectral representation as the input to 
DeepPitch.  The output of the Pitch Estimator is used as a signal in its own right in multiple contexts (pitch, 
melody, chord in music; pitch and prosody for speech) [21], and as a grouping cue for Auditory Scene 
Analysis [5], stream separation and noise robustness.   
 
To fully deliver on the potential of DeepPitch in the context of the broader Human Auditory Pathway 
model, it will be necessary to extend DeepPitch to the general-purpose Polyphonic case.  An early attempt 
at this was reported in [15], using a hand-crafted fixed Harmonic Sieve approach on a logarithmic 
frequency scale, however its performance was limited by octave errors in speech, and poor pitch 
estimation performance for extreme pitches (i.e. very low- or very high-pitched musical notes).  The 
current DeepPitch architecture solves those problems, as can be seen in Figure 5, and we believe it could 
now be extended to the general-purpose Polyphonic case. 
 
 

 

Figure 4:  DeepPitch Output for male speech “She sells sea shells by the sea shore”. 

Green dots are ground truth Pitch values.  Blue dots are Pitch Estimates from the  

DeepPitch algorithm. 

 

 



 

 
Figure 5:  DeepPitch Output for the Core Data Set.  Green dots are  

ground truth Pitch values.  Blue dots are Pitch Estimates from the  

DeepPitch algorithm. 
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