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ABSTRACT 

This thesis is an investigation of Vector Quantization, Scalar Linear Prediction and 

other related signal processing techniques, with the purpose of providing high quality, 

low delay speech waveform coding at medium data rates (16 kbls). 

Speech waveform coding systems based on adaptive scalar prediction and adaptive 

scalar quantization have been used to provide toll quality coded speech at high rates such 

as 32 kbls (ADPCM). However, the performance of these systems is known to degrade 

to sub-toll quality at 16 kbls, due to excessive quantization noise. Vector Quantization 

(VQ) is well known to provide a significant reduction in quantization noise over scalar 

quantization; in fact VQ can be shown to have a theoretically optimal rate-distortion per- 

formance at very large vector dimensions. This suggests that the performance of 16 kbls 

ADPCM may be sigmf5cantly improved by replacing the scalar quantizer with a vector 

quantizer. 

The resulting configuration, called Vector ADPCM, has an inherently high com- 

plexity; however, techniques are described which reduce the complexity to the level 

where implementation with commercially available digital hardware is feasible. Vector 

ADPCM is found to provide a 3-dB performance improvement over scalar ADPCM, with 

a 15 times increase in complexity, while still maintaining an encodingldecoding delay of 

less than 2 milliseconds. Adaptive Postfiltering significantly improves the subjective 

quality of the coded speech. Informal listening tests indicate that the coded speech is of 

very good communications quality. 
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I. INTRODUCTION 

1.1. MOTIVATION FOR RESEARCH. 

Digital waveform coding of speech for telecommunications applications began in 

1962, when the first commercial digital transmission lines were installed in the United 

States. The system, still in widespread use today, was based on an early version of 

Pulse-Code-Modulation (PCM), a simple waveform coding algorithm requiring 64,000 

bits of information to be transmitted every second (64 kb/s) for the faithful reproduction 

of the speech waveform at the receiver. 

Advances in solid-state integrated circuit technology and in digital signal processing 

techniques led to the development of Adaptive Differential Pulse-Code-Modulation 

(ADPCM), standardized for telecommunications applications by the International Tele- 

phone and Telegraph Consultative Committee (CCITT) in 1984. This well-known 

waveform coding algorithm requires only 32 kb/s for accurate reproduction of the speech 

waveform, half the data rate required for the original PCM system. 

Proposals are now under consideration for a 16 kb/s standard for speech coding, for 

possible standardization in telecommunications applications by the CCI?T in 1990-91. 

Speech coding at 16 kb/s is therefore a subject of great research interest at the present 

time. The primary requirements for such a 16 kb/s speech coding algorithm are likely to 

include: 

1. Good subjective speech quality (i.e. toll quality speech). The term toll quality 

is used to describe speech quality acceptable for use in telecommunications 

applications, and generally implies speech quality comparable to that of analog 

speech with a 200-3200 Hz bandwidth, a signal-to-noise ratio of 30 dB and 

less than 2.3% harmonic distortion[l9]. 

2. Medium-to-Low complexity. Characterizations of complexity are loosely 

defined in the literature and change with advances in technology. In this con- 

text, medium-to-low complexity means roughly that the algorithm can be 



implemented using a single Digital-Signal-Processing Integrated Circuit @sp 
chip). More precisely, low complexity is generally used to describe algorithms 

which require a few multiplications per sample (such as PCM); medium corn- 

plexity coders would require up to a few hundred multiplications per sample 

(such as ADPCM); and high complexity coders would require more than about 

six hundred multiplications per sample, which is beyond the processing power 

of current state-of-the-art DSP chips. 

3. Low Delay. Impedance mismatches in telephone equipment result in echoes 

of the transmitted signals, which can be perceptible if there is a round-trip 

delay in the transmission link of over 80 milliseconds. To allow for other 

sources of delay in the transmission link, it is desirable for the one-way delay 

(one encoding and one decoding) of the coding algorithm be as short as possi- 

ble, preferably below 5 milliseconds. 

Secondary requirements for the 16 kbls speech coding algorithm are likely to include: 

Good performance with voice-band data signals. The speech coding algorithm 

would also be required to accurately encode modem signals and Dual-Tone- 

Multi-Frequency (DTMF, or touch-tone) signals. 

Good performance in the presence of transmission bit errors. Channel noise on 

the digital link will inevitably corrupt the digital data used by the receiver to 

reconstruct the speech waveform. A digital link is considered to be usable at 

average bit-error-rates as high as one bit-error in one thousand bits. The 

speech coding algorithm should give good performance at error rates up to this 

level. 

Good performance for tandem transcodings with PCM and ADPCM. In prac- 

tice, a codingldecoding &vice (CODEC) may be used in series with other 

standard coding devices. Multiple encodings/decodings with the same 

CODEC or different CODECS should not degrade the signal excessively+ 

This thesis is an investigation of various signal processing techniques with the pur- 

pose of providing high quality, medium-low complexity, low delay speech waveform 



coding at medium rates (16 kbls). The secondary issues of voice-band data transmission, 

bit error performance, and tandem transcoding performance are beyond the scope of the 

current work. 

1.2. BACKGROUND AND RESEARCH METHODOLOGY. 

ADPCM, which is based on Scalar Linear Prediction and Scalar Quantization, is 

known to provide good quality speech waveform coding at 32 kbls. However, the perfor- 

mance of ADPCM degrades to an unacceptable level at 16 kb/s, largely due the excessive 

noise introduced by the quantizer. This suggests that an improvement in the quantizer 

could result in an improvement of the composite coding algorithm. 

Vector Quantization (VQ) has been identified as a promising technique for digital 

coding of analog signals, with theoretically optimal rate-distortion performance at high 

vector dimensions. In Vector Quantization, groups of adjacent samples are quantized 

together by selecting a codeword from a codebook which minimizes some distortion 

measure (mean-squared-error in this work). In practice, the main obstacle to the use of 

Vector Quantization is the exponential growth of codebook search complexity with vec- 

tor dimension. One approach to exploit the performance of the Vector Quantizer is to 

combine it with other redundancy removal procedures, such as Linear Prediction. 

The idea of combining Vector Quantization with Linear Prediction, in order to 

reduce the complexity for a given performance level, was proposed by Cuperman and 

Gersho in 1982[16]. The proposed algorithm was Adaptive Differential Vector Coding 

(ADVC), a vector generalization of ADPCM, which used a Vector Quantizer and a Vec- 

tor Predictor. This work indicated the promise of Vector Quantization in conjunction 

with Linear Prediction, however the performance of the Vector Predictor was consider- 

ably poorer than the well-known scalar predictor. 

Thus, for the current work, a natural candidate for investigation was the combina- 

tion of a Vector Quantizer and a Scalar Predictor in an ADPCM-like configuration. Such 

a combination would address the problems of high quantization noise in scalar ADPCM, 

and poor predictor performance in ADVC. 



In summary, the current work focusses on the combination of Vector Quantization, 

Scalar Linear Prediction and other signal processing techniques, for medium complexity, 

medium rate speech waveform coding. 

1.3. OUTLINE OF THESIS 

The history of digital speech waveform coding and its application in the telecom- 

munications network environment are described in Chapter 2. Current and expected 

future directions of digital speech waveform coding in the network are also described as 

a motivation for the present work. 

Chapter 3 describes the previous development of relevant signal processing tech- 

niques, including Scalar Quantization, Linear Prediction, ADPCM, Vector Quantization, 

Analysis-by-Synthesis techniques, and Adaptive Posdiltering. 

In Chapter 4, a new solution called Vector ADPCM (VADPCM) is presented for 

medium rate speech waveform coding. This speech coding algorithm incorporates a 

Vector Quantizer and a Scalar Linear Predictor in an Analysis-by-Synthesis 

configuration. The algorithm has good speech quality and inherently low delay. 

Methods for substantially reducing the inherently high complexity of the algorithm with 

little or no degradation in performance are described. Adaptive Postfiltering is used to 

further improve the subjective speech quality. 

Simulation results and complexity estimates for the proposed algorithm are 

presented in Chapter 5. Conclusions of the research and directions for future research are 

discussed in Chapter 6. 



2. DIGITAL SPEECH W A ~ F O R M  CODING 
FOR TELECOMMUNICATIONS. 

2.1. DIGITAL SPEECH IN THE NETWORK ENVIRONMENT. 

Pulse-Code-Modulation (PCM) is the simplest form of digital speech coding, in 

which the speech signal is sampled and encoded as a stream of binary pulses. PCM was 

invented in France before World War II[23], and was immediately recognized as having 

two important advantages over analog (continuous in amplitude and time) transmission 

of speech: 

1. It could tolerate high levels of noise and distortion without impairing the 

encoded signal, and 

2. Repeaters could be used to regenerate the PCM-encoded signal, thus prevent- 

ing the accumulation of noise and distortion effects in long repeater4 systems. 

For these reasons, PCM became a subject of research at Bell Laboratories, where 

several engineering studies of digital speech systems were performed in the 1940's. At 

the time, it was found that digital speech had two major disadvantages: 

1. It required high speed logic circuits, which could not be built inexpensively 

and reliably using the existing vacuum tube technology, and 

2. It required about ten times the bandwidth of a conventional analog system. 

The first problem was recognized by M. J. Kelly, director of research (and later 

president of Bell Laboratories), who realized that the telephone system required elec- 

tronic switching and better amplifiers to replace vacuum tubes. In 1945, a solid-state 

physics group was formed with the objective of obtaining "new knowledge that can be 

used in the development of completely new and improved components and apparatus ele- 

ments of communication systems" [35]. One of the most important specific goals, the 

development of a solid-state amplifier, was achieved in 1947-48 by Brattain, Bardeen and 

Shockley, with the development of the transistor. This important device had improved 

amplification characteristics over the vacuum tube, without the need for a heated 



filament. In 1950, Bell Labs was able to produce the very pure semiconductor crystals 

required, and by 1951 the transistor was being produced commercially. This led to the 

development over the next few years of the reliable and inexpensive high speed logic cir- 

cuits necessary for the feasibility of digital speech coding in the network. 

The higher bandwidth requirement for PCM is a serious problem in many radio 

applications, where bandwidth limitations can be very severe. However, for cable 

transmission, the higher bandwidth requirement is not such a serious problem. In cables, 

degradations such as crosstalk and noise increase with frequency, placing a limit on use- 

ful bandwidth. However, PCM is more tolerant to these degradations than analog 

transmission, and thus can use high frequencies that would not have been available for 

analog transmission[23]. 

With the two major objections removed, digital speech coding in the telecommuni- 

cations network became feasible. The first application of digital speech was on exchange 

trunks - the cables which interconnect switching centers in and around cities. At that 

time, the Bell System required a new low-cost-per-channel system which could carry 

both speech and switching control signals over the relatively short (average 6 miles) 

exchange trunks. Engineering studies indicated that PCM could carry the required sig- 

nals, and its cost-per-channel was low since many channels could be multiplexed through 

the same cable and terminal equipment. 

As a result of these engineering studies, an exploratory PCM system, called TI, was 

developed in 1955. The T1 system allowed 24 PCM voice channels to be transmitted 

over a single cable pair. Each PCM voice channel was encoded by sampling the 

waveform 8,000 times per second, and encoding the sample amplitude with 8 bits 

(neglecting signalling bits), resulting in a total bit rate per channel of 64,000 bitslsecond 

(64 kbls). The 24 PCM channels were time-division-multiplexed (TDM), or interleaved 

in time, with a small amount of synchronization data, for a total bit rate of 1.544 Mbls. 

An experimental T1 system was tested in 1958, and the first successful field trials of 

T1 were carried out in 1961 and early 1962. Installation of the first commercial Tls fol- 

lowed shortly afterward. 



2.2. FROM 64 kbls PCM TO 32 kbls ADPCM. 

Digital speech transmission systems found increasing popularity with local tele- 

phone companies through the 1960s and 1970s because of their reliability, low mainte- 

nance cost, and space savings. The deployment of Electronic Switching Systems (ESS), 

beginning with the No. 4 ESS in 1976, ushered in an era of integrated digital switching 

and transmission, paving the way for tremendous new features and cost savings. 

In particular, it was realized that a further cost saving could be achieved by reducing 

the data rate for digital transmission of speech from 64 kbls. This would allow the tele- 

phone company to carry significantly more calls with the same equipment. In June, 

1982, the need for an international 32 kbls coding standard was formally identified by the 

CCITT. An expert group was given the mandate to recommend and fully specify a 32 

kbls waveform coding algorithm[9]. 

The CCITT expert group quickly identified the requirements of the new 32 kb/s 

algorithm, including: 

The algorithm should sample at 8 kHz and encode at 4 bits per sample, for 

compatibility with existing PCM equipment. 

The algorithm should not rely on side information to transmit parameters or 

maintain frame alignment. 

The algorithm should be able to recover gracefully from transmission errors. 

The algorithm should be able to carry DTMF tones and voice-band data sig- 

nals up to 4800 bitslsecond. 

The algorithm should maintain adequate performance in the presence of syn- 

chronous and asynchronous transcodings with PCM. 

ADPCM was identified early in the CCITI' submissions process as an algorithm 

which was likely to meet the requirements outlined by the CCITT expert group. The 

basic ADPCM algorithm for speech is based on subtracting a prediction of the current 

sample from the current sample, and quantizing the prediction error with a 4-bit quan- 

tizer. However, the CCIlT expert group realized that optimizing the ADPCM algorithm 



for both voice and non-voice signals was considerably more challenging than optimizing 

for voice alone. 

Over the next 18 months, the expert group selected and fully defined an ADPCM 

algorithm of reasonable complexity which could meet the above performance require- 

ments. The algorithm, formally approved in the October 1984 CCI?T plenary session as 

an international standard, is specified in detail in CCI'IT Recommendation G.721. This 

led to the development of several Very Large Scale Integration (VLSI) single-chip 32 

kb/s ADPCM codecs and transcoders by the larger integrated circuit manufacturers. 

2.3. THE FUTURE 16 kb/s SPEECH CODING STANDARD. 

By 1988, integrated circuit technology and digital signal processing techniques for 

speech coding had advanced to the point where a moderate complexity, low delay, toll 

quality 16 kb/s speech coding algorithm appeared to be within reach. A CCI'IT Ad Hoc 

Group was established to specify requirements and investigate algorithms for a possible 

16 kb/s speech coding standard. 

The requirements for the 16 kb/s coding algorithm are expected to be substantially 

the same as those for the 32 kb/s algorithm, except that it will encode at 2 bits per Sam- 

ple, and it will have to allow for tandem transcoding with both PCM at 64 kb/s and 

ADPCM at 32 kb/s. The announcement of a 16 kb/s standard is expected in 1990-9 1. 

2.4. LOW RATE SPEECH CODING. 

A considerable body of work exists on speech coding at rates below 16 kb/s. In the 

present environment, these may be classified roughly by their rate and subjective quality: 

1. Toll quality is currently considered achievable at bit rates above 14 kb/s. 

Speech of this quality is considered acceptable for use by the general public. 

The primary data rates of interest have been submultiples of 64 kb/s, such as 

32 kb/s and 16 kb/s, for compatibility with existing network equipment. The 



most popular coding techniques in this range have been PCM, ADPCM, and 

modified DPCM algorithms, such as Delta Modulation[29]. These algorithms 

are called waveform coders since they attempt to faithfully reproduce the input 

waveform. It should be noted that the current work falls in this category. 

2. Communications Quality is generally achievable at bit rates below 14 kbls and 

above 5 kb/s. Speech of this quality is considered acceptable for military, 

amateur and citizens-band radio operators. The most popular data rates in this 

range have been 8 kbls, a submultiple of 64 kbls for possible network applica- 

tions, and 9.6 kbls, for which modems are commercially available. The pri- 

mary coding methods in this range are Adaptive Transform Coding[39], Sub- 

band Coding[l4], Adaptive Predictive Coding[4], and Multi-Pulse Linear 

Predictive Coding[2]. 

3. Synthetic Quality is used to describe speech coding below 5 kbls. Generally 

speech of this quality is used where intelligibility is required but human- 

sounding naturalness can be sacrificed. The most common data rates in this 

range have been those for which modems are commercially available, such as 

4.8 kb/s, 2.4 kbls, and 1.2 kb/s. Code-Excited Linear Prediction (CELP) is 

popular at 4.8 kb/s, and Vocoder (Voice CODER) techniques, such as Linear 

Predictive Coding, are commonly used at 2.4 and 1.2 kbls. LPC is often called 

a parametric coding algorithm, since it generally depends upon a parametric 

description of the transfer function of the human vocal tract to achieve its low 

rates, and does not attempt to reproduce the input waveform exactly. 

Several of the signal processing techniques developed originally for these lower 

rates are applicable to the present work, which addresses the problem of low delay, 

medium complexity speech coding at 16 kbls. The next chapter describes the relevant 

previous work in detail. 



3. REVIEW OF PREVIOUS WORK 

3.1. INTRODUCTION. 

The focus of the present work is on medium complexity, low delay 16 kbls speech 

waveform coding. A natural direction for investigation was an extension of 32 kbls 

ADPCM to 16 kb/s. Such a system would encode each prediction error sample with two 

bits, This avenue has been tested extensively by other researchers [24,39], It has been 

found that the performance of ADPCM degrades to below toll quality at 16 kbls, due to 

the excessive quantization noise at only 2 bitslsample. 

This indicated two general areas for improvement in the ADPCM configuration: 

1. Can the quantization noise be reduced at 2 bitslsample? 

2. Can the quantization noise be made less perceptible at 2 bitslsample? 

The first question is addressed by an investigation of Vector Quantization, which 

has been shown to have a theoretically optimal rate-distortion performance. The intro- 

duction of a Vector Quantizer into the ADPCM configuration is thus expected to improve 

the coding performance of the system. 

The introduction of a Vector Quantizer into the inherently scalar ADPCM 

configuration is not trivial. However, there is a precedent in the Analysis-by-Synthesis 
f 

technique of Atal and Schroeder[3], which has been used to interconnect a vector process 

and a scalar process, with a considerable increase in complexity. 

The second question of making the quantization noise less perceptible in an 

ADPCM configuration has been addressed by Jayant and Ramamoorthy[27], who added 

adaptive postfiltering and noise-shaping to ADPCM. 

This chapter describes the previous work on the above signal processing techniques, 

as a motivation for the present solution. We begin in Section 3.2 with a brief description 

of Scalar Quantization techniques. Section 3.3 follows with a description of Linear Pred- 

iction and Differential PCM, with an emphasis on Adaptive Differential PCM. Particular 

attention is paid to adaptation of the linear predictor and predictor stability. The CCITT 



32 kbls ADPCM algorithm is described in Section 3.4 as an important special case of 

linear predictive encoding. The performance of ADPCM over the range of bit rates from 

32 kb/s to 16 kbls is discussed as a motivation for quantizer improvement. 

Section 3.5 deals with previous work on Vector Quantization. The Vector Quan- 

tizer is defined, and the optimal iterative codebook design procedure, the LBG algo- 

rithm[30], is described. Adaptive Differential Vector Coding (ADVC), a vector generali- 

zation of ADPCM proposed by Cuperman and Gersho[l6], was the first approach to 

combining a Vector Quantizer with a Linear Predictor. The properties of this algorithm 

are discussed. 

The Analysis-by-Synthesis configuration is described in Section 3.6 in the context 

of Code-Excited Linear Prediction (CELP) [3]. Section 3.7 deals with Adaptive 

Postfiltering and Noise-Shaping [27] to improve the subjective quality of ADPCM-coded 

speech. 

3.2. SCALAR QUANTIZATION TECHNIQUES. 

The function of a quantizer is to map the amplitude of the input sample x(n) into the 

nearest one of a finite set of possible amplitude levels y(n), where nearest means the level 

which minimizes some distortion measure D(x(n),y(n)). Usually the distortion measure is 

the mean squared error 

The mean-squared-error distortion measure is used in the present work. 

Usually a binary word i is used to represent each of the possible amplitude levels. 

The inverse quantizer at the decoder then generates the the amplitude value y(n) 

corresponding to the received binary word. 

The quantization noise q(n) introduced by this quantization procedure is the differ- 

ence between the input sample x(n) and the quantized sample y(n): 



The number of amplitude levels L used to represent the sample and the transmission 

rate R are related by: 

R = log2 L bitslsample (3.3) 

For example, a PCM system sampling at 8 H z  and transmitting 64 kbls has a rate of 

6418=8 bitslsample, and therefore 2*=256 amplitude levels. 

3.2.1. Performance Measures: Signal-to-Noise Ratio and Segmental SNR. 

The simplest and most commonly used performance measure is the signal-to-noise 

ratio, defined in terms of the variance of the input signal 4, the variance of the quantiza- 

tion error signal 4. 
The Signal-to-Noise Ratio is defined as 

SNR = $14 
and in practice, for zero-mean signals, the estimate 

is used, where N is the number of samples in the estimate. While this measure is very 

often used, it does not correlate well with subjective impressions of speech quality. The 

main reason for this is that periods of high energy in the non-stationary speech signal 

tend to dominate the SNR, obscuring the coder's performance on weak signals. 

The Segmental SNR (SEGSNR) is based on a dynamic time-weighting to compen- 

sate for the under-emphasis of weak signals in the conventional SNR calculation. 

SEGSNR is computed by measuring the SNR (dB) in short frames (typically 60 ms), and 

calculating the average frame SNR (dB) value. The log-weighting in the conversion to 

dB values adds the emphasis to the weak-signal intervals. 



3.2.2. Non-uniform Quantizers. 

In its simplest form, the uniform quantizer, the quantizer levels are equally spaced. 

However, this does not necessarily yield the smallest error variance. One common 

approach for improving quantizer performance is the use of a non-uniform quantizer. 

Non-uniform quantizers are based on the idea of choosing closer levels where there 

is a high probability of occurrence of x(n), and more distant levels where the probability 

of occurrence of x(n) is low. Clearly this requires a priori knowledge of the probability 

density function px(x). 

There are two well-known techniques for designing non-uniform quantizers for a 

given input probability density function px(x). The first technique, called companding for 

compressing and expanding, is used in practical systems where robustness in the pres- 

ence of signals with a wide dynamic range is needed. This technique is based on passing 

the input signal through an amplitude nonlinearity which emphasizes small signals and 

compresses large signals, quantizing with a uniform quantizer, and passing the signal 

through the inverse of the amplitude nonlinearity. For non-predictive speech coding at 

high bit rates such as 7 and 8 bits per sample, a logarithmic non-linearity is often used for 

compression, and the resulting scheme is called log PCM or log-companded PCM. This 

companding technique is generally not used at lower bit rates, or in DPCM systems, 

where adaptive quantizers are preferred. 

Optimization of the non-uniform quantizer is based on an iterative solution which 

minimizes the mean-squared error. The optimum reconstructed amplitude levels ykaOpt 

and decision levels x ~ , ~ ~ ~  were first given by Max[33] and Lloyd[31] : 



Equation (3.6) states that the optimum decision levels are halfway between neighboring 

reconstruction levels, and equation (3.8) states that a reconstruction level should be the 

centroid of the pdf within its interval. From these conditions, it is possible to calculate 

the quantizer decision and reconstruction levels iteratively. 

3.2.3. Adaptive Quantizers. 

Adaptive Quantization is based on the idea of changing the quantizer characteristics 

based on the local statistics of the input signal. The most common adaptive quantization 

schemes adapt the step size 6(n) (the uniform spacing between reconstruction levels) in 

response to changes in a short-term estimate of input signal variance 3. Quantizer adap- 

tation strategies can generally be classified as either forward-adaptive or backward- 

adaptive. Block diagrams of the two strategies are shown in Figure 3.1. 

In forward-adaptive quantization, the new step size 6(n) is based on the short-term 

statistics of the unquantized input signal {~(n)}. Since this signal is not available at the 

decoder, these raw statistics (or the new step size) must be quantized and sent to the 

decoder as side information. This is a significant disadvantage for forward-adaptive 

quantization. 

However, in backward-adaptive prediction, the predictor coefficients are based on 

the short-term statistics of the quantized signal y(n), which is available at the decoder, 

and therefore there is no need to send any side information. At medium and high data 

rates (2 2 bitslsample), when the quantization noise is small, the statistics of the recon- 

structed signal agree closely with the statistics of the unquantized input signal, thus good 

quantizer adaptation can be achieved without the need for side information. For this rea- 

son, backward-adaptive systems are preferred at these data rates. 
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3.3. LINEAR PREDICTION AND PREDICTIVE CODING. 

3.3.1. Basic Configuration. 

Predictive Coding or DifSerential Coding systems are based on predicting the 

current waveform sample by a linear combination of previous samples (a Linear Predic- 

tion), and quantizing the prediction error. The most common Differential Coding 

configuration, called Differential Pulse-Code-Modulation (DPCM), is shown in Figure 

3.2. Such a configuration is called a closed-loop or feedback-around-quantizer structure. 

In this configuration, the prediction xyn) is based on quantized values y(n), rather than 

unquantized values x(n), thus allowing identical signal reconstruction at both encoder and 

decoder (in the absence of transmission errors). 

The prediction f(n) is subtracted from the current sample x(n) to give the prediction 

error 

e(n) = x(n) - x!n). 

The quantized prediction error 

is added back to the prediction f(n) to produce a reconstructed sample 

It can easily be shown that the quantization error q(n) and reconstruction error e(n) are 

equal, i.e. 
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3.3.2. Performance Measure: Prediction Gain. 

The performance of the DPCM coding scheme is determined by the predictor per- 

formance and the quantizer performance. The usual quantizer performance measures 

have been described in section 3.2.1. The most common predictor performance measure, 

the prediction gain, is defined in terms of the variance of the input signal 4, the variance 

of the prediction e m  signal d. 
The Prediction Gain is defined as 

and represents the relative amount of energy removed from the quantizer input by the 

predictor, Since the variance of the quantizer output is proportional to the variance of the 

quantizer input for a given quantizer, the reduction of quantizer input variance leads 

directly to a reduction of reconstruction error variance[26]. This is expressed in the use- 

ful relation 

3.3.3. Predictor Structure and Optimal Predictors. 

The most general form of the linear predictor equation is 

in which the prediction is a linear combination of p previous reconstructed samples and z 

previous quantized prediction error samples. The above relation defines a pole-zero pred- 

ictor, so named since the transfer function 



hasp non-trivial poles, and z non-trivial zeroes. 

The type of predictor to be used in a given application (i.e. the number of poles and 

zeroes, and the predictor coefficients) depends upon the statistics of the input process 

{x}.[6] It is common to model the input process {x} as the output of a discrete-time linear 

filter F(z) which is being excited by a white input sequence {w} (sometimes called the 

innovations process ). The properties of the filter F(z) determine the statistics of the pro- 

cess {x}, and therefore determine the optimal predictor P(z) for coding {x}. It can be 

shown that P(z) = F(z) is the optimal predictor for coding the process {x}[26]. 

In the case where an all-pole predictor of order p is being used to model a stationary 

process, it can be shown that the optimum predictor coefficients are related to the sample 

autocorrelation function by the well-known Wiener-Hopf equations: 

or in matrix notation, 

r, = Rzhopt (3.19) 

hopt = ~ g r ,  (3.20) 

There are special recursive algorithms for solving for hOpt which exploit the Toeplitz 

symmetry of R, and the fact that r, and R, have p-1 identical elements[l8]. 

Long-time averaged plots of autocorrelation functions for low-pass filtered (LPF) 

speech and band-pass filtered (BPF) speech are available in Jayant and Noll[26]. Thus, 



one straightforward approach to designing an optimal all-pole predictor would be to sim- 

ply solve the Weiner-Hopf equations for the optimal predictor coefficients {hj,.,pJ using 

these long-term average autocorrelation values. 

Unfortunately, such an approach assumes that the speech is a stationary process (i.e. 

that the first- and second-order statistics are constant over time). It is well-known that 

this is not the case[26], and as a result, fixed predictors based on long-term average 

speech statistics have a limited prediction gain of about 8 dB for BPF speech, and about 

10- 1 1 dB for LPF speech. 

3.3.4. Adaptive Prediction. 

A considerable performance improvement is possible if the predictor is allowed to 

adapt to the short-term statistics of the input signal. Predictor Adaptation strategies can 

generally be classified as either forward-adaptive or backward-adaptive. Block diagrams 

of the two strategies are shown in Figure 3.3. 

In forward-adaptive prediction, the predictor coefficients are based on the short- 

term statistics of the unquantized input signal {x}. Since this signal is not available at the 

decoder, these raw statistics (or the predictor coefficients) must be quantized and sent to 

the decoder as side information. However, in backward-adaptive prediction, the predic- 

tor coefficients are based on the short-term statistics of the quantized signals, which are 

available at the decoder, and therefore there is no need to send any side information. 

At high data rates, when the quantization noise is small, the statistics of the recon- 

structed signal agree closely with the statistics of the unquantized input signal, thus good 
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predictor adaptation can be achieved without the need for side information. For this rea- 

son, backward-adaptive systems are preferred at high data rates. At rates below 16 kbls 

(2 bits/sample), the higher quantization noise results in poor predictor adaptation, and 

forward prediction is preferred. 

There are two well-known approaches for forward adaptation of the predictor: the 

~utocorrelation method and the Covariance method. In both methods, the speech signal 

is blocked into frames, typically of length M = 128 samples (16 ms), R, is calculated for 

the frame of samples, and then the Wiener-Hopf equations for the optimal all-pole pred- 

ictor are solved. The all-pole predictor coefficients are then quantized and transmitted to 

the decoder as side information. 

The difference between the Autocorrelation method and the Covariance methods 

lies in the procedure used to estimate R,. In the Autocorrelation method, only the M 

samples of the frame are used to calculate R,, while in the Covariance method, R, is 

based on the M samples of the current frame and the last p samples of the previous frame. 

This is justified by the fact that these p samples are used to predict the first samples of the 

current frame. 

The Autocorrelation method has the advantage that the R, matrix is Toeplitz, and 

therefore the efficient recursive algorithms can be used to solve for hoPp The Covariance 

method produces an R, matrix which is symmetric but not Teoplitz, and therefore this 

method has a considerable computational disadvantage. The Autocorrelation method 

also has the advantage that the recursive filter which uses h,,, and hence the DPCM 

decoder, will also be stable. 

In both the Autocorrelation method and the Covariance method for forward- 

adaptive prediction, the optimal predictor coefficients hop, cannot be computed until the 

entire frame has been input. This results in a one-way coding delay on the order of the 

frame length. This is a significant disadvantage in some applications, including the 

current work, where coding delay is severely constrained. 
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Since backward-adaptive prediction does not require transmission of the optimal 

predictor coefficients as side information, there is the possibility of updating the predictor 

much more frequently, i.e. after every sample. Such sequentially adaptive backward 

predictors are usually based on the method of steepest descent or gradient search, 

derived below [26]. 

We define the optimum predictor hopt as the predictor which produces the minimum 

mean-squared prediction error $. In general, the mean-squared prediction e m  as a 

function of h is a quadratic function of the weights: 

&h) = $ - 2hTr, + hT~&.  (3.21) 

Geometrically, this function defines a p-dimensional paraboloid (hyper-paraboloid), 

shown in Figure 3.4 for the two-dimensional case. 

FIGURE 3.4. Variance of Prediction Error as a function of Coefficient Vector 

of second order. 



The bottom of the concave surface defines h,,. Given any h, with its corresponding point 

on the concave surface, adaptation towards hop, can be defined as moving towards the 

bottom of the surface. The optimal direction in which to move is determined by the sur- 

face gradient 

In the method of steepest descent, the vector of predictor coefficients h(n) at time n is 

adjusted after each sample, by subtracting a small fraction of an estimate of the gradient: 

The parameter a(n) determines the rate of adaptation, and is often simply chosen to 

be a constant a. Large values of a result in fast adaptation, but greater steady-state esti- 

mation noise, since h will tend to oscillate around hoPp For stationary signals, the condi- 

tion for convergence is[40]: 

where h,, is the largest eigenvalue of the autocorrelation matrix R,. 



3.3.5. The Least Mean Square Algorithm. 

. A simple and often-used method for estimating the gradient vC$ is the least mean 

square (LMS) algorithrn[40]. In this method, the square of instantaneous quantized 

difference signal u2(n) is used as the error criterion, instead of the long-term average of 

the unquantized difference signal C$. This method has the advantage that u2(n) is avail- 

able at both the transmitter and receiver, and therefore the the decoder predictor can track 

along with the encoder predictor. Now the estimate of the gradient is 

Substituting this into equation (3.23) gives the updating algorithm 

For stationary signals, the crosscorrelation term u(n)y(n) vanishes if prediction is 

optimal and quantization effects are small. However, in practice, a non-zero quantization 

error prevents the update term u(n)y(n) from vanishing, and the mean-squared-error will 

not be reached. However, by using a small a or a decreasing function a(n), the mean- 

squared-error may nearly reach the optimal minimum value. 

For non-stationary signals such as speech, the centre of the bowl in Figure 3.4 is 

constantly moving, The gradient coefficient a must be chosen large enough to track the 

changing input statistics, and yet small enough so that deviations about the intended 

values are within tolerable limits. 

To reduce complexity, many practical speech coding systems use a slightly subop- 

timal update term, based on polarity crosscorrelations and a constant gradient coefficient. 

Also, to allow the predictor at the decoder to recover from transmission bit errors, a leak 

factor 5 is used. The form of the predictor update equation is now: 

Typical values are h = 0.996 and a = 0.001. 



In the case of an all-zero predictor, the update term is proportional to u(n)u(n), 

instead of u(n)y(n)[36]. In this case, the all-zero adaptation equations become 

gj(n+l) = hjgj(n) + +an) sgn u(n) sgn u(n-13; j = 1,2, ...J (3.29) 

3.3.6. Stability Constraints. 

It is possible for an adaptive predictor to adapt to an unstable state in the presence 

of non-stationarities in the input signal or transmission errors. To ensure that this does 

not happen, it is common to apply stability constraints to the predictor. 

Since the predictor is simply an adaptive filter, we may draw upon the well-known 

stability constraints in the adaptive filter literature. However, this must be done with 

care, since the predictor is not an isolated filter; it is an embedded component in a larger 

system. In this section, the well-known stability constraints for an isolated filter are 

described Then the impact of these stability issues within the DPCM configuration are 

described. 

Figure 3.5 shows a general pole-zero filter, of the same form as the predictor dis- 

cussed in the previous sections. 

FIGURE 3.5. General pole-zero filter. 



The current output of the filter y(n) is a linear combination of the current input u(n), 

and the previous z inputs andp outputs: 

This results in the following transfer function between the output Y(z) and the input 

U(z): 

For Bounded-In-Bounded-Out or BIB0 stability, it is well known that the stability 

condition for such a filter is that the poles of the filter, or the roots of the denominator 

polynomial 1 - H(z) , must lie within the unit circle in the complex plane[5]. 

While numerical procedures exist for solving for the positions of the poles of a filter 

given its coefficients, it is highly desirable from a complexity standpoint to have explicit 

constraints on the filter coefficients themselves, rather than the pole locations. Such a set 

of constraints is very well-known in the case of a two-pole filter, and is given by[5]: 

The stability region for a third-order filter is given by[6]: 



A general procedure for deriving the stability constraints for filters of arbitrary order 

may be based on the Schur-Cohn criterion [32], which gives the number of zeroes of a 

given polynomial within a circle of a specified radius. While this method will give the 

desired constraints, it does not necessarily give the constraints in the simplest form for 

low order filters. 

We now apply a similar stability analysis to the more complicated DPCM system. 

To do this, it is necessary to write the transfer function between the inputs and outputs at 

both the transmitter and receiver, and then e n s 9  that the roots of the denominator poly- 

nomials are inside the unit circle. 

The transfer function between the DPCM receiver input and output is 

and therefore for BIBO stability at the receiver we must ensure that the roots of the poly- 

nomial 1 - H(z) are within the unit circle. 

Neglecting quantization effects, the transfer function between the DPCM 

transmitter input and and output is: 

and therefore for BIBO stability at the transmitter we must ensure that the roots of the 

polynomial 1 + G(z) are within the unit circle. 

Thus for BIBO stability at both the DPCM transmitter and receiver, we require the 

predictor transfer function P(z) and its inverse ~ ' ( z )  to be stable. This is the definition 

of a minimum phase predictor filter. 



3.4. THE CCITT 32 kbls ADPCM ALGORITHM. 

3.4.1. Description of CCITT ADPCM Algorithm. 

The CCI'IT 32 kb/s ADPCM Algorithm is an important special case of predictive 

coding schemes in the context of the present work. The system block diagram is shown 

in Figure 3.6. The ADPCM algorithm uses a 4-bit backward-adaptive quantizer, called a 

dynamic locking quantizer which stops adapting in the presence of a stationary input[26]. 

The dynamic locking feature was added to improve the performance for voice-band data 

signals. Since this consideration is beyond the scope of the current work, this feature will 

not be described in detail here. 

The predictor used in the ADPCM algorithm is a two-pole six-zero backward- 

adaptive predictor. The adaptation of the all-zero coefficients gj(n) follows equation 

(3.29), with h,=09961 and aj(n)=0.0078125 for all j: 

gj(n+l) = 0.9961gj(n) + 0.0078125 sgn u(n) sgn u(n-j] (3.36) 

A more complicated strategy is used for adapting the all-pole coefficients, in order 

to provide improved performance on voice-band data signals, and to provide more robust 

performance in the presence of transmission errors[34]. Here, the adaptation of the all- 

pole coefficients is based on a polarity correlation of the partial output (zero-based recon- 

struction term) 

where 
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The all-pole predictor update equations are 

hl(n+l) = 0.9961hl(n) + 0.01 172 sgn p(n) sgnp(n-1) 

b(n+l)  = 0.9922b(n) + O.OO78 125 sgn p(n) sgn p(n-2) 

- 0.0078 125 f [hl(n)] sgn p(n) sgn p(n-1) 

Conservative constraints are explicitly applied to the all-pole predictor coefficients 

to ensure stability at the receiver: 

The fixed-point implementation specified in CCITr G.721[10] imposes an implicit 

constraint on the all-zero predictor coefficients: 

However, it should be noted that there are no constraints to ensure that the zeroes of the 

predictor filter stay inside the unit circle. As described in Section 3.3.6, such constraints 

are necessary to ensure that the predictor is minimum phase. Stability at the transmitter 

in the CCITT ADPCM algorithm therefore cannot be guaranteed. 

In practice, it appears that the leak factors in the predictor adaptation equations slow 

the growth of the all-zero prediction coefficients, so the roots of 1 + G(z) tend to stay 

inside the unit circle; in fact, it should be noted that no occurrences of instability have 

been observed with the specified CCITT algorithm leak factors. However, this is no 

guarantee of stability. The effects of these omitted stability constraints on predictor per- 

formance and the role of the leak factors are investigated further in Section 5.2. 
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3.4.2. ADPCM Performance. 

In the research environment, it is common to test the performance of a new coding 

algorithm on samples of telephone-bandwidth speech over a wide range of speakers. The 

objective performance of the coding algorithm is usually expressed in terms of the 

Signal-to-Noise Ratio (SNR), and occasionally in terms of the Segmental Signal-to-Noise 

Ratio (SEGSNR). For example, 64 kbls log companded PCM speech achieves approxi- 

mately 38 dB SNR over a wide range of input signal levels[26], and a 32-34 dB 

SEGSNR. 

The subjective performance of the coding algorithm is usually expressed in terms of 

Mean-Opinion-Scores, in which an ensemble of subjects listen to speech recordings and 

give rankings on a scale of 1 to 5, with 5 representing excellent quality, and 1 represent- 

ing very bad quality[26]. 64 kbls log-companded PCM speech achieves a MOS score of 

about 4.5. 

In the interests of repeatability, it is also common to present SNR results with deter- 

ministic inputs such as sine waves and narrow-band gaussian noise. Acceptance tests for 

CCITT standards are often expressed in terms of compliance with certain performance 

templates using deterministic waveforms[8]. 

The C C m  32 kb/s ADPCM algorithm has been extensively tested. With speech, its 

SNR performance is typically 25-30 dB. It has a MOS score of 4.0 after one 

encodingldecoding operation, and a MOS score of 3.5 after 4 asynchronous transcod- 

ings[26]. It also meets the dynamic range and SNR requirements for certain important 

detexminis tic waveforms [8]. 

The performance of ADPCM degrades significantly at rates below 32 kbls. The 

SNR values for ADPCM-coded speech at 16 kbls are in the range of 13-14 dB, and MOS 

scores for ADPCM-coded speech at 16 kbls are well below 3.0[24]. This level of perfor- 

mance is unacceptable for telecommunications applications. 

The focus of the present work is on improving the performance of the basic 

ADPCM system, by improving the quantizer performance, and making the quantizer 

noise less perceptible. The latter issue is addressed by postfiltering the reconstructed 



signal, and is described in Section 3.6. The issue of improving the quantizer perfor- 

mance is addressed by an investigation of Vector Quantization in the next section. 

3.5. Vector Quantization. 

A vector quantizer (VQ) is a system for mapping a sequence of k-dimensional vec- 

tors into a digital sequence. The origins of vector quantization may be traced back to 

Shannon's source coding theory[38], which states that memoryless vector quantization 

can achieve nearly optimal rate-distortion performance at very large vector dimensions. 

The discussion of VQ follows the discussion of scalar quantization in section 3.2; 

scalar quantization is in fact a special case of vector quantization. 

In waveform vector quantization of speech, the speech waveform is sampled and 

blocked into groups of k consecutive samples (k-dimensional vectors) 

xn = (xna xnl , . , x,J which are then quantized simultaneously as a single unit. The 

quantization procedure may be regarded as finding a codevector yn = VQ(xJ in a code- 

book with L codevectors which is nearest to the input vector x,, in the sense that it 

minimizes some distortion measure D(x,,yJ. In the present work, the distortion measure 

is usually the mean squared error 

k 

i.e. the square of the Euclidean distance between the vectors. 

A common geometric interpretation for the two-dimensional case is shown in Fig- 

ure 3.7, in which in the input vector xn and the codevectors are represented by points in 

the two-dimensional space. The quantization procedure is simply that of choosing the 

nearest codevector point. 



FIGURE 3.7, Geometric Interpretation of VQ for k=2. 

FIGURE 3.8. Voronoi Cells for k2 example. 



It is possible to partition the space into L regions Si according to a nearest-neighbour 

rule, where each region is associated with a codevector, and the resulting regions are 

called Voronoi regions or Voronoi cells[20]. The set of cell boundaries is called a Voro- 

noi partition. The Voronoi cells for the above codevectors are shown in Figure 3.8. It 

can be shown that the centroids of the Voronoi regions are the optimum codevectors for 

that Voronoi partition, and in fact this is the basis for the codebook optimization pro- 

cedure to be described in section 3.5.1. 

Usually a binary word i is used to represent each of the possible codevectors. The 

inverse quantizer at the decoder then retrieves the the quantized value yn from an identi- 

cal codebook. 

The quantization noise q, introduced by this quantization procedure is the differ- 

ence between the input vector x, and the quantized vector yn: 

The number of codebook elements L used to represent the k-dimensional vector and 

the transmission rate R are related by: 

For example, a VQ system sampling at 8 kHz and quantizing at R=2 bitslsample in vector 

dimension k3 has L=23" =64 codevectors in the codebook, and has a bit rate of 

(8kHz)(2bitslsample)=16kbls. 

3.5.1. Vector Quantizer Design. 

The design of the Vector Quantizer follows an iterative design procedure which is a 

vector generalization of the Lloyd-Max algorithm for scalar quantizer. This vector gen- 

eralization was first described by Linde, Buzo and Gray[30], and is now well-known as 

the LBG algorithm. 



In the LBG algorithm, a long training sequence from a wide group of speakers is 

used to optimize the codebook. To tell if the training sequence was long enough, the 

trained codebook should be tested on out-of-training-sequence data; if the performance is 

close to the in-sequence performance, we can have some confidence that it will give 

roughly the same performance in the future[21]. If the training and test performance 

differ significantly, then probably the training sequence is not long enough. 

Linde, Buzo and Gray developed a codebook optimization procedure which minim- 

izes the average value of the encoding distortion, based on the following observations: 

1. The optimum codevector yi for a- given Voronoi cell Si should be chosen to 

minimize the distortion corresponding to that cell: 

E[D(x,yj) I x E Si] S E[D(x,u) I x E Si 1 , any u E R~ (3.45) 

2. For a given set of codevectors {yJ, the optimal partition {SJ is defined by the 

nearest neighbour rule: 

x e Si iff D(x,yj) S D(x,ym) , m = 12, . . ,L, (3.46) 

It can be shown that, if the distortion function is the mean-squared-error, the first 

condition is equivalent to stating that the optimum codevector yi within each partition Si 

is simply the centroid of the input vectors which fall in that partition. 

The LBG algorithm is thus: 

1. GIVEN: a training sequence {x} and an initial codebook {y$. 

2. Encode the training sequence using the current codebook. 

3. For each cell, move the codevector to the new centroid of all the input vectors 

which fell into that cell. 

4. Repeat steps 2 and 3 until average distortion is acceptable, or is not changing 

with further iterations. 

Finally, the new codebook should be tested on out-of-sequence data to ensure that train- 

ing sequence was long enough. To ensure fairness in comparing various algorithms 



based on Vector quantization, this work emphasizes out-of-sequence test results, 

This method will generally converge to a locally optimum codebook, and while 

convergence to a globally optimum codebook is not guaranteed, a good choice of initial 

codebook will usually result in a good final codebook[21]. 

There are several ways to generate initial codebooks. The simplest method is to 

simply choose a codebook with L random codevectors, or to choose L vectors at random 

from the training sequence. However, one of the most-often used methods of generating 

the initial codebook is the "splitting" technique. In this method, the initial codebook con- 

tains only one codevector, located at the centroid of the entire training sequence. This 

single codevector is then split to form two codevectors, i.e. a second codevector is 

created by adding some small perturbation to the first codevector. The algorithm is then 

run on the new Zcodevector codebook, and the resulting codevectors are then split. This 

procedure continues until the final codebook size is reached. 

It is possible under some circumstances that no input vectors will map into a partic- 

ular cell. This "empty-cell" problem and a procedure for dealing with it was first 

described by Cuperman[15]. In this modified LBG algorithm, the number of input vec- 

tors mapped into each cell is checked, if an empty cell is found, the comsponding 

codevector is deleted and a new codevector is defined by splitting the codevector with the 

highest distortion. 

3.5.2. Performance of Vector Quantizers 

Early application of vector quantization to speech waveform coding began with 

Gray and Linde[22], and Abut, et. al.[l], using the LBG algorithm to design vector quan- 

tizers for Gauss-Markov sources. The vector quantizer results were found to be 

significantly better than the scalar predictive coders which were tested. 

In addition, Abut et al. tested their VQ on speech. Their best out-of-sequence 

results at 2 bitslsample gave SNR = 13 dB, which is about 6 dB better than the optimum 

scalar quantizer, and comparable to quoted figures for scalar ADPCM (13.5 dB). 



It should be noted that the performance gain of vector quantizers over scalar quanti- 

zation is strongly related to the characteristics of the input signal for which the quantizers 

are designed. In practice, a significant part (but not all) of the vector quantizer gain is 

based on exploiting the adjacent-sample correlation of the source, as in the above exam- 

ples on speech and Gauss-Markov sources. In the case of a memoryless source, the vec- 

tor quantizer gain increases very slowly with vector dimension, and comes at a great 

increase in complexity. For example, in the classic paper by Linde, Bum and Gray, vec- 

tor quantization with k=6 at 1 bit/sample is shown to give better performance than scalar 

quantization for a memoryless Gaussian source, but closer inspection reveals that the per- 

formance gain in this case was 0.54 dB, at the cost of a factor of 32 increase in complex- 

ity! 

3.53. Complexity Reduction for Practical Applications of Vector Quantization. 

The main disadvantage of vector quantization is the exponential increase of com- 

plexity with vector dimension, associated with performing the codebook search. For a 

vector quantizer of vector dimension k operating at a bit rate of R bitslsample, the com- 

putational complexity is proportional to 2CR and the memory requirements are propor- 

tional to kzCR. In practice, this prevents the use of high-dimensionality vector quantiza- 

tion which is necessary to approach the asymptotic performance promised by the Shan- 

non coding theorem. 

There are two common approaches to this problem: 

1. A constrained codebook structure may be used to simplify the codebook 

search, allowing a higher dimension codebook to be used for a given level of 

computational complexity. These structured codebooks are generally subop- 

timal, in the sense that their performance is worse than an unstructured code- 

book at the same rate and dimension. However, when compared on the basis 

of equal complexity, the structured codebooks tend to perform better than the 

unstructured codebooks. Examples of this approach include tree-search vector 



quantization[7], and shape-gain VQ[37]. 

2. Vector quantization may be combined with other data compression techniques, 

to improve its performance at a given vector dimension and complexity level. 

The prime example of the second technique is Vector Predictive Coding, first described 

by Cupeman and Gersho[l7]. This algorithm is a vector generalization of DPCM, in 

which the residual of a all-pole vector predictor is vector quantized. The block diagram 

of the system appears in Figure 3.9. 
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FIGURE 3.9. Vector Predictive Coding block diagram. 

The block diagram is clearly a vector generalization of the DPCM shown in Figure 

3.2. The predictor adaptation was based on a frame classifier which selected one of three 



vector predictors, each optimized for a particular signal type, and the frame classification 

index was transmitted as side information. 

Two approaches to the joint optimization of the vector quantizer and the vector 

predictor were considered. In the open-loop approach, the predictor is optimized on the 

unquantized training data, and then the prediction residuals are computed once and used 

to train the vector quantizer. This is a valid approach when the quantization noise is 

small i.e. at high transmission rates. 

In the closed-loop approach, the predictor is optimized on the basis of quantized 

training data after each codebook optimization. This approach was found to give a 1-2 

dB improvement on in-sequence data. While convergence cannot be guaranteed in this 

case, no convergence problems were observed. 

The algorithm was found to give approximately SNR = 20.5 dB at vector dimension 

k=5 on in-sequence data, and approximately 17.0 dB on out-of-sequence d a a  These 

results compared very favourably with other coding algorithms and prompted consider- 

able further research in predictive quantization techniques. 

One of the weaknesses reported in the vector predictive coding algorithm was the 

low prediction gain of the vector predictor, due to the decreasing autocorrelation function 

of speech with increasing lag. The present work attempts to address this problem by com- 

bining a vector quantizer with a scalar predictor. This combination may be achieved 

using the analysis-by-synthesis technique, in which a codebook excitation vector is used 

to excite a scalar linear filter. The analysis-by-synthesis technique is discussed in Section 



3.5.4. Gain-Adaptive Vector Quantization. 

Gain-Adaptive Vector Quantization was first described by Chen and Gersho[l3], 

and is a generalization of adaptive scalar quantization to the vector case. In both the 

scalar and vector cases, the quantiier is adapted in response to a short-term estimate of 

the input signal standard deviation Gn. This may be achieved by actually scaling dl the 

codevector elements by a gain factor Gn, however it is preferable from a complexity 

standpoint to divide the input to the quantizer by the estimated gain. Forward-gain- 

adaptive VQ and backward-gain-adaptive VQ block diagrams are shown in Figure 3.10. 
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FIGURE 3.10. Gain-Adaptive Vector Quantization. (a) forward gain 

adaptation. (b) backward gain adaptation. 



It is necessary to modify the codebook design algorithm to account for the gain- 

normalization. It may be shown [I31 that the optimal code vecun in the Voronoi cell Sj 

is the weighted centroid of S+ 

Gain-Adaptive vector quantization was found to be superior to non-gain-adaptive VQ in 

subjective performance, SNR, SEGSNR, and performance on inputs with a wide 

dynamic range, with only a very small increase in complexity. 

3.6. Analysis- by-Synthesis Methods. 

The first coding system to use the analysis-by-synthesis technique was called Code 

Excited Linear Prediction (CELP), and is closely related to Adaptive Predictive Coding 

@PC) . This method was originally proposed by B. S. Atal and M. R. Schroeder for low 

rate applications (below 8 kbls or 1 bit/sample)[3]. 

The basic CELP analysis-by-synthesis configuration is shown in Figure 3.1 1. In this 

configuration, a trial codevector u is selected from an innovations codebook. The sam- 

ples u(n) are filtered by a synthesis flter H(z) to produce the trial reconstructed speech 

samples y(n). The synthesized speech samples are subtracted from the input speech sam- 

ples x(n) to produce an error sample q(n), which is then filtered by a perceptual weighting 

filter W(z) to produce a weighted error sample qkn). The codevector which results in the 
- smallest weighted mean-square error is selected, and its index is transmitted to the 

receiver. 
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FIGURE 3.11. Code-Excited Linear Prediction. 

In this system, the synthesis filter consists of a short-delay predictor and a long- 

delay or pitch predictor. Both of these predictors are forward-adaptive, requiring the 

transmission of predictor parameters as side information. Sometimes, a gain-factor is 

used to scale the innovations sequence before the synthesis filter. 

The CELP technique promised good speech quality at very low rates, using an inno- 

vations codebook of size 1024 codevectors, each of length 40 samples. Several tech- 

niques were used to generate the codevectors, including random selection of unit- 

variance gaussian numbers. This was justified since it was found that the probability dis- 

tribution function of the prediction error samples after both short delay and long delay 

predictions is nearly Gaussian [3]. Of course, it is possible to use the standard Vector 

Quantization LBG algorithms techniques to train the codebook, and this has been done 



by Chan and Cupennan[ll]. 

The main disadvantage to the analysis-by-synthesis configuration is that it leads to 

very high complexity. This is because each codevector must be filtered through the syn- 

thesis filter before the optimum innovations codevector may be selected. The complexity 

of the basic CELP configuration was estimated at over 500 million float-point- operations 

per second (500 Mflops), which is well beyond the reach of currently available DSP 

chips. 

Techniques to reduce the complexity of the CELP coding process include using a 

structured codebook, and pre-computing the Zero-input-response of the synthesis filter. 

The latter technique was first described in by Chen and Gersho[l2] in the context of their 

Vector APC 9.6 kbls codec design, and is used in the present work. 

It should be noted that the present work was approached from the point of view of 

introducing a vector quantizer into the backward-adaptive ADPCM configuration in an 

analysis-by-synthesis configuration. The resulting configuration may equivalently be 

regarded as a CELP configuration in which the predictor is backward-adaptive. 

3.7. Adaptive Noise-Shaping and Post-filtering. 

Noise-shaping and Post-filtering were developed to improve the subjective quality 

of coded speech, by exploiting the fact that noise which has the same spectral shapeaas 

speech tends to be perceived by the human ear as speech[27]. 

This technique has been used in many speech coding algorithms, including APC[4], 

CELP[3], and more recently ADPCM[25,27]. All-pole noise-shaping is used at the 

transmitter to shape the spectrum of the quantization noise, by weighting the reconstruc- 

tion error. All-zero or pole-zero post-filtering is used at the receiver to filter the recsn- 

structed speech, so that noise is emphasized in the spectral regions where is signal is 

strong, and suppressed where the signal is weak. Often, the noise-shaping and post- 

filtering filters are made adaptive by using a scaled version of the adaptive predictor 

filter. 
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The basic noise-shaping and post-filtering configurations are shown in the ADPCM 

configuration in Figure 3.12. At the transmitter, the reconstruction error q(n) is filtered by 

an error feedback filter F(z) to produce a filtered reconstruction error sample qAn). This 

filtered error sample is then added to the prediction residual before quantization. 

Given the all-pole part of the predictor H(z) as defined in equation (3.3.1), where 

it is common to use a scaled noise-shaping filter 

where OIcGl. This results in a shaped reconstruction error Q'(z) which is related to the 

unshaped reconstruction error Q(z) by the all-pole transfer function 

If there is no noise-shaping. If a d ,  the poles of the noise spectrum tend to 

mimic the poles of the input speech spectrum. An intermediate value of a, typically 0.5 

is usually found to provide the best subjective results. 

For post-filtering, the all-zero or pole-zero predictor coefficients are scaled similarly 

to achieve a post-filter, which may then be used to filter the reconstructed speech. Previ- 

ous research [25] has found a subjective preference for all-pole noise-shaping in combi- 

nation with all-zero post-filtering. 

It should be noted that, while these techniques achieve a considerable reduction in 

the perceived noise, the SNR actually decreases. One method of estimating the "improve- 

ment" by post-filtering is to measure the mean-squared-error between the post-filtered 

signal and same input signal which has been filtered with the same post-filter. Unfor- 

tunately, this is not a very meaningful measurement since it does not account for the dis- 

tortion ("muffling") of the speech associated with too much postfiltering. For this reason, 



this method of estimating postfilter performance is not commonly used, and generally, 

postfilter parameters are determined on the basis of subjective preference. 



4. VECTOR ADPCM FOR 16 kbls SPEECH WAVEFORM CODING. 

4.1. INTRODUCTION. 

The present work addresses the problem of low delay, medium complexity, high 

quality speech waveform coding at 16 kbls. It has been shown in Chapter 3 that scalar 

Linear Predictive coding schemes such as ADPCM are very effective at high data rates 

such as 32 kbls, but their performance degrades significantly at 16 kbls, due to excessive 

quantization noise at only 2 bits/sample. Vector Quantization has been shown to provide 

a significant performance improvement over scalar quantization, and therefore the com- 

bination of a scalar linear predictor and a vector quantizer appears to be a promising ave- 

nue for investigation. 

The CCITI' 32 kb/s ADPCM algorithm contains a 2-pole, 6-zero predictor, which is 

known to have low complexity and good performance on speech and voice-band-data 

signals, with and without transmission errors. For this reason, the "CCITI' predictor" is 

used as a starting point in the present work, to be combined with a Vector Quantizer. 

Variations of this predictor are also considered. 

The Analysis-by-Synthesis configuration used in CELP is found to be suitable for 

combining the vector quantizer and the backward-adaptive scalar linear predictor. The 

combination of the Vector Quantizer and the backward-adaptive scalar linear predictor in 

the Analysis-by-Synthesis configuration constitutes the basic Vector ADPCM solution. 

The basic Vector ADPCM solution is found to have good performance but very 

high complexity even at low vector dimensions such as 4. For this reason, considerable 

attention is paid to complexity reduction techniques, particularly in reducing the number 

of computations in 'the exhaustive codebook search for the optimum codevector. With 

negligible loss in performance, it is possible to reduce the complexity by up to a factor of 

3 simply by precomputation of key parameters before each search through the codebook, 

or by periodic update of slowly varying parameters. 



A considerable performance improvement is possible if the vector quantizer is ma& 

gain-adaptive, i.e. the prediction residual is normalized before being vector quantized. 

This also allows a fair comparison between scalar ADPCM (which includes an adaptive 

scalar quantizer) and Vector ADPCM. A subjective improvement is also realized by 

adaptively postfiltering the reconstructed speech. 

In Section 4.2, the basic Vector ADPCM configuration is &scribed, including the 

Vector Quantizer and the pole-zero linear predictor in an Analysis-by-Synthesis 

configuration. The issue of complexity reduction is addressed in Section 4.3. Section 4.4 

deals with variations of the predictor which may provide a performance improvement 

over the CCITT predictor. Adaptive postfiltering is discussed in Section 4.5. Finally, in 

Section 4.6, Gain-Adaptive Vector Quantization is introduced into the Vector ADPCM . 

system. Simulation results and complexity estimates are presented in Chapter 5. 

4.2. BASIC CONFIGURATION 

Figure 4.1 shows a block diagram of the Analysis-by-S ynthesis (A-S) configuration, 

containing a Vector Quantizer and backward-adaptive pole-zero Scalar Predictor. The 

transmitter configuration is shown in Figure 4.l(a), and the receiver configuration includ- 

ing Postfiltering is shown in Figure 4.l(b). 

The A-S configuration is necessary to allow the Vector Quantizer (VQ) and Scalar 

Predictor to operate together, since the VQ introduces a block delay in the encoding pro- 

cess, while the Scalar Predictor requires sample-by-sample update of the quantized pred- 

iction residual. The nearest-neighbor codebook search proceeds as follows: for a trial 

codevector i, the codevector elements u(n,i) are processed through the predictor filter to 

produce the predicted samples x?n,i). The predictor equation is 

where y(n-j,i) and u(n-j,i) may not depend on i if the index (n-J] refers to samples of a 
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FIGURE 4.1. Vector ADPCM. (a) Transmitter. 

(b) Receiver with Posffiltering. 



previous vector. This fact can be exploited to reduce computational load by precomput- 

ing the component due only to the previous vectors (the Zero-Input-Response), as 

described below. 

The reconstructed samples are generated by adding the predicted samples to the 

codevector elements: 

and the squared reconstruction error for the codevector is 

where k is the vector dimension and no is the sample number of the first sample in the 

vector, This procedure is repeated for i=1,2, ...fly where N is the number of codevectors 

in the codebook, and the codevector which minimizes the squared reconstruction error is 

selected: 

In the codebook training phase, the prediction residuals 

are grouped into vectors of the form [ e(n,io) and clustered using the LBG algo- 

rithm[30]. 

The predictor is adapted using the CCITI' predictor sign algorithm adaptation equa- 

tions (3.36-41), or with variations as described in Section 4.4. 

4.3. COMPLEXITY REDUCTION 

Three methods are used to reduce the number of computations required by the A-S 

technique. The first step in complexity reduction is based on the fact that the predictor 

coefficients hj(n,i) and gj(n,i) in equation (4.1) change slowly, and thus these coefficients 



need not be updated during the optimal codevector selection. Hence, the index i in hj(n,i) 

and gj(n,i) may be dropped. This results in a negligible performance degradation. 

The second complexity reduction method exploits the fact that the output of the 

predictor filter consists of two components[l2]. The Zero-Input-Response RZIR(n) is the 

filter output due only to the previous vectors. The Zero-State-Response bR(n,i) is the 

filter output due only to the the trial codevector i, such that 

For each search through the codebook, the ZIR may be precomputed and subtracted from 

the input samples, to produce the partial input sample 

;(n) = x(n) - fzR(n)Ro 

The partially reconstructed speech sample 

is then subtracted from the partial input sample i ( n )  to produce the reconstruction error 

The resulting configuration is shown in Figure 4.2(a). 

The third complexity reduction method is based on the following observation: the 

filter coefficients change slowly, and thus the partially reconstructed samples yZR(n,i) for 

a given codevector also change slowly. Therefore, the yZsR(n,i) filter outputs may be 

periodically computed and stored in a new ZSR codebook, resulting in the configuration 

shown in Figure 4.2(b). The use of the ZSR codebook was described by Chen and Gersho 

[12]. This results in a substantial reduction in computational load with only a slight per- 

formance degradation (see Chapter 5 for performance results). 
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4.4. PREDICTOR VARIATIONS. 

The 2-pole 6-zero backward-adaptive scalar linear predictor used in the CCI'IT 32 

kb/s algorithm is expected to give very good performance in the Vector ADPCM 

configuration. However, several variations on this predictor were investigated in the 

hopes of finding a performance improvement. 

These variations included: 

Using 3 poles instead of 2, since stability constraints are readily available [6]. 
This predictor is expected to achieve some improvement on low-pass filtered 

speech signals, but no significant improvement on band-pass filtered speech, 

since the third pole must necessarily be real and therefore can only contribute a 

low-frequency peak to the predicted speech spectrum. 

Using 3 zeroes instead of 6, and applying explicit stability constraints which 

would ensure that the predictor is minimum phase. It is noted again that insta- 

bility of the inverse CCITI' predictor filter is possible due to the lack of stabil- 

ity constraints on the zeroes of the filter. However, no occumnces of instabil- 

ity have been observed, apparently due to the presence of the leak factors h, 

which limit the growth rate of the all-zero predictor coefficients. Since, in 

practice, the predictor seems to stay minimum phase without the need for 

explicit minimum phase constraints, reducing the number of zeroes from 6 to 3 

is not expected to achieve an improvement. 

Using an adaptive step size algorithm, in which the size of the predictor 

coefficient update term is made dependent upon the recent variances of the 

cross-correlated signals. This is expected to increase the complexity slightly 

and offer a small performance improvement by allowing a better adaptation of 

the predictor. 

In the adaptive step size algorithm, the update equations take the form: 

a hj(n+l) = hjhj(n) + u(n)y(n-J] ; j = 1,2,.-,p (4.10) 
ouo, + Y 



where y is a small number to ensure that division by zero does not occur, and a m g  

estimate of the variances is used: 

4.5. ADAPTIVE POSTFILTERING. 

Postfiltering is an effective method of improving the subjective quality of the coded 

speech 1251. The postfilter is derived simply by scaling the coefficients of the Scalar 

Predictor. Note that this also gives a motivation for using the powerful scalar predictor 

rather than the weaker vector predictor, since postfilter performance is directly related to 

predictor gain. The introduction of the postfilter at the receiver does not require retrain- 

ing of the VQ codebook. 

A signal-to-noise measure which takes into account the effects of postfiltering is 

obtained by comparing the postfiltered decoded speech with the original speech filtered 

by the same filter[27]. 

It should also be noted that the postfilter does not have a constant gain. In practice, 

uncorrelated speech sounds such as fricatives tend to be strongly attenuated which 

significantly degrades subjective speech quality. This problem is easily remedied by 

applying an automatic gain control to the output of the postfilter, to ensure that the local 

estimates of variance of the reconstructed and postfiltered speech are the same, as shown 

in Figure 4.3. 



FIGURE 4.3. Vector ADPCM Receiver with Postfilter and AGC. 
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4.6. GAIN-ADAPTNE VECTOR QUANTIZATION. 
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A further improvement in subjective performance is possible with Gain-Adaptive 

Vector Quantization[13], in which the input to the Vector Quantizer is normalized before 

optimal codevector selection. In the analysis-by-synthesis configuration, a gain- 

norglized codebook is used, and the normalized codevector urn,, under consideration 

must be scaled by an estimate of prediction residual variance o, before filtering through 

the predictor filter. The estimate of variance follows equation (4.12), with a new gain- 

adapter memory coefficient Sgoin: 
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The resulting configuration is shown in Figure 4.4. This configuration requires 

retraining of the codebook. 
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FIGURE 4.4. Vector ADPCM Transmitter with Gain Adaptation. 

Unfortunately, the above configuration may result in a substantial increase in corn- 

plexity depending on the size of the codebook, since each codevector must be multiplied 

by the gain before filtering through the predictor. An equivalent configuration with no 

loss in performance is possible by dividing the partial input sample x*(n) by the gain, 

which need only be done once per vector. The resulting configuration is shown in Figure 

4.5. 



FIGURE 4.5. Complexity-Reduced Vector A 

4.7. PROPOSED SOLUTION. 

ADPCM with Gain Adaptation. 

The proposed solution consists of the Vector Quantizer and CCITT predictor in an 

Analysis-by-Synthesis configuration, as shown in Figure 4.6. The Zero-Input-Response 

(ZIR) of the predictor is precomputed and subtracted from the input vector to produce the 

samples of the partial input vector i ( n )  befon the codebook search is done. In addition, 

the partial input vector is divided by the gain (a local estimate of prediction residual vari- 

ance) before the codebook search is done. The zero-state-response (ZSR) table is 

updated periodically (typically every 48 samples) based on the adapted predictor 
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FIGURE 4.6. Proposed Vector ADPCM Solution 

(a) Transmitter. (b) Receiver. 



coefficients. The codevector which minimizes the mean-square-error between the gain- 

normalized partial input sample and the partial reconstructed sample is selected, and its 

index is transmitted to the receiver. 

The receiver takes the transmitted codevector index and generates the samples of 

the corresponding normalized codevector uWm(n); these are multiplied by the gain (the 

local estimate of prediction residual variance) and filtered through the predictor, to gen- 

erate the reconstructed samples y(n). The reconstructed samples are then filtered through 

the postfilter and scaled by the automatic gain control to produce the final output coded 

speech. 

The perfonnance and complexity of the proposed solution are described in Chapter 



5. EXPERIMENTAL RESULTS. 

Tests have been performed on the proposed Vector ADPCM system to determine 

the level of performance and complexity. In order to allow a comparison with other 

related systems, such as direct waveform vector quantization and scalar ADPCM, these 

systems have also been simulated. 

The test conditions and waveform databases used for evaluating the algorithms are 

described in detail in Section 5.1. The database of waveforms for testing includes uni- 

formly distributed random samples, gaussian random samples, and bandpass filtered 

speech. In section 5.2, the CCI'IT predictor and several important variations are tested in 

isolation (with no quantizer) on speech data, to determine the open-loop prediction gain 

of the various algorithms. In section 5.3, Waveform Vector Quantization is applied to 

the uniformly distributed samples, the gaussian distributed samples, and the speech data, 

to determine the performance of the vector quantizer in the absence of the predictor. Sec- 

tion 5.4 describes the performance of Vector ADPCM, and in Section 5.5, complexity 

estimates for the Vector ADPCM algorithm and its variations are given. 

5.1. TEST CONDITIONS. 

As described in Section 3.4.1, all comparisons involving Vector Quantizer-based 

algorithms will be made on the basis of out-of-training performance i.e. the codebook 

will be trained on one file, and tested on another file. In order to ensure good training 

and a fair evaluation of performance, it is necessary to use a long training sequence. 

However, there is no fixed rule which states how long a training file must be to ensure 

good training. A reasonable approach to determine the required length of the training 

and testing files is to measure the first- and second-order statistics of the two files. If the 

statistics are reasonably close (i.e. within a few percent) the two files are judged to be 

representative of each other, and therefore, if they were generated independently, we may 

have some confidence that they are repxesentative of the class of signals to which they 



both belong. 

The waveform database files used to test the various algorithms include uniformly 

distributed random sample files Uniforml, Uniform2; gaussian random sample files 

Gaussl, Gauss2; and bandpass filtered (300 - 3400 Hz) speech files Speechl, Speech2 

The statistics of the database files are summarized below in Table 5.1. 

Database File 
Statistic 

Uniforml 

256000 

Gaussl 1 Gauss2 Speech1 1 Speech2 I 
# of samples 

duration (s) 

mean 

st. dev. 

minimum 

maximum 

TABLE 5.1. Statistics of database files used in algorithm evaluation. 

It should be noted that the speech files are longer than the random sample files. 

This was necessary to achieve similar statistics between the two speech files - shorter 

speech files resulted in significant differences between the first- and second-order statis- 

tics, The file Speechl contains 24 phonetically balanced sentences, 12 spoken by males 

and 12 spoken by females. The file Speech2 contains 22 phonetically balanced sen- 

tences, 10 spoken by males and 12 spoken by females. Both speech files are approxi- 

mately one minute in duration. 



5.2. PREDICTOR PERFORMANCE 

As described in Chapter 4, the CCITT 2-pole 6-zero backward-adaptive predictor is 

used as a starting point for the present work. The performance of this predictor and 

several variations is described in this section. In this section, all tests are done assuming 

a perfect quantizer, (i.e. prediction and predictor adaptation are done on the basis of 

unquantized data) to isolate the performance of the predictor. All tests are performed on 

the speech file Speech2 

The CCITT predictor is found to give a prediction gain of 9.93 dB on this speech 

file. A sample of the input waveform and the prediction residual are shown in Figure 5.1. 

FIGURE 5.1. Effect of CCITT predictor on speech. (a) Input signal 

and (b) unquantized prediction residual. 



It has been shown in Chapter 3 that the CCITT predictor is not constrained to be 

minimum phase, and therefore that the prediction residual may become unbounded (or 

very large) if the zeroes of the predictor go outside the unit circle; however in practice it 

appears that this does not happen. The most likely reason for this is the presence of the 

leak factors, which limit the growth rate of the all-zero predictor coefficients g j  and may 

prevent the zeroes from going outside the unit circle. 

This hypothesis was tested by setting the leak factors to 1.0 and running the predic- 

tor on the file Speech2. The prediction gain was large and negative, indicating that very 

la& prediction error(s) had occuned. Figure 5.2 shows one such event. 

FIGURE 5.2. Effect of leak factors in CCITT predictor. (a) Input 

signal. (b) unquantized prediction residual with standard CCITT leak 

factors. (c) unquantized prediction residual with leak factors b1.0. 



From this, we conclude that the leak factors provide a stabilizing effect in the 

absence of explicit minimum phase constraints in the CCITI' predictor. 

In order to be certain that the predictor remains minimum phase, it would be neces- 

sary to apply explicit constraints to the zeroes of the predictor. Such constraints exist in 

a simple form in the third-order case, as described in section 3.3.6, so a 2-pole 3-zero 

predictor with checks on the zeroes was simulated. The prediction gain dropped to 9.06 

dB, indicating that about 0.8 dB of the prediction gain is due to the last three zeroes. 

When the same 2-pole 3-zero predictor was simulated without the checks on the zeroes, 

the prediction gain was unchanged at 9.06 dB, indicating that the stability checks were 

never actually used. This appears to confirm the hypothesis that the stability checks on 

the zeroes are not needed in the presence of well-chosen leak factors. 

The literature states that the zero-based reconstruction terms were introduced in 

equations (3.37-3.39) to improve the performance of the predictor in the presence of 

transmission errors, and to improve the performance with voice-band data signals. For 

this reason, the performance of the simple sign algorithm of equation (3.28-3.29) was 

expected to be better than the CCI'IT predictor on speech signals in the absence of 

transmission errors. However, this was not the case. The 2-pole 6-zero "sign only" algo- 

rithm achieved a prediction gain of only 8.92 dB, about 1 dB lower than the CCTF pred- 

ictor, which includes the zero-based reconstruction. One possible explanation for this is 

that the pole-zero adaptation equations of (3.37-3.39) specilically account for the pres- 

ence of the zeroes in the predictor, and therefore may result in a better adaptation of the 

all-pole coefficients. 

The addition of the a third pole to the CCI'IT algorithm was found to provide a 

small improvement on lowpass filtered speech, however when tested on bandpass filtered 

speech, the prediction gain was 9.64 dB, slightly lower than the 2-pole 6-zero CCITT 

algorithm. This result is expected since the third pole must be real, and therefore can 

only contribute a low-frequency peak to the modelled speech spectrum. 

The effect of the specific 2-pole stability constraints given in equations 3.39 was 

also investigated. It was found that using the CCI'IT predictor but using the all-pole 



9.78 dB. Similarly, it was found that using the all-pole stability checks lh2110.9375 and 

lh1110.9375-h2 also resulted in a lower prediction gain of 9.54 dB. 

Finally, the adaptive step size algorithm was simulated, in which the step size of the 

CCITT predictor equations (3.37-3.39) was made inversely proportional to the standard 

deviation of the cross-correlated terms in the update equation, as in equations (4.10- 

4.11). With 2 poles and 6 zeroes, the prediction gain improved to 10.22 dB, up about 0.3 

dB from the standard CCITI' algorithm. 

From the above test results, the following conclusions may be drawn: 

The CCI'IT 2-pole 6-zero predictor with zero-based reconstruction gives 9.93 

dB prediction gain on band-pass filtered speech, in the absence of quantization 

noise. 

The leak factors in the CCITT algorithm appear to have a stabilizing effect on 

the zeroes of the predictor, which are not constrained to be within the unit cir- 

cle. For this reason, it appears that stability checks on the zeroes are not 

required, 

The addition of a third pole does not provide a sigmficant improvement on 

bandpass filtered speech. 

The use of an adaptive step size algorithm, as described above, appears to 

improve performance only slightly, at the expense of considerable additional 

complexity, 

In addition, the CCITT predictor is known to have other desirable properties which were 

not investigated above, including good performance in the presence of transmission 

errors and with voice-band data. For these reasons, the CCITT Zpole 6-zero predictor is 

used without modification in all subsequent tests. 



5.3. WAVEFORM VECTOR QUANTIZER PERFORMANCE 

The performance of vector quantizers operating directly on particular waveform 

types has been evaluated, with a view to providing a performance comparison with Vec- 

tor ADPCM, in which the vector quantizer operates on a prediction residual. Vector 

Quantizer performance was evaluated on three signal types: uniform random samples, 

gaussian random samples, and speech. As described in Section 5.1, different files are 

used in each case for training and testing. Final comparisons are made on the basis of 

out-of-sequence test results. 

5.3.1. Uniformly Distributed Source. 

Table 5.2 shows the performance of the vector quantizer on the uniformly distri- 

buted source, for vector dimensions k=l (scalar) to k=4, and a rate of 2 bits/sample. 

In-Sequence Out-of-Sequence 

TABLE 5.2. Waveform vector quantizer performance on uniformly 

distributed random samples. 

The performance on the uniformly distributed random samples is seen to be approx- 

imately 12 dB, essentially independent of vector dimension k. The slight deviations at 

higher vector dimensions are due to the decreasing training ratio with increasing vector 

dimension; in the k=l case, there are 4 centroids, with an average of 64,000 vectors asso- 

- ciated with each. In the k=4 case, there are 256 centroids, with an average of 250 vectors 

associated with each. This generally results in slightly better in-sequence performance, 



and slightly worse out-of-sequence performance, as seen above. However, for all practi- 

cal purposes, at 2 bits/sample, there appears to be no benefit to using Vector Quantization 

over scalar quantization on uniformly distributed random samples. 

In the scalar and k2 cases, it is convenient and instructive to give a visual display 

of the input data distributions and the resulting centroids. Figure 5.3 shows the input dis- 

tribution, as a histogram indicating likelihood of occurrence, with the resulting centroids 

superimposed on the figure. As should be expected for the uniformly distributed random 

samples, the centroids are also uniformly distributed. 

Relative 
Freq. of Occur. 

Normalized 
Amp1 itude 

I 

FIGURE 5.3. Input distribution and centroids for uniformly distri- 

bu ted random samples (scalar quantization). 



FIGURE 5.4. (a) Input distribution and (b) centroids for uniformly 

distributed random samples (dimension 2 vector quantization). 



For k 2 ,  the input distribution is represented as a two-dimensional scatter-plot in 

Figure 5.4 (a). The corresponding centroids are shown in Figure 5.4 (b), Clearly the 

centroids fall in a uniform square grid pattern, with slight deviations which may be 

accounted for by the particular input distribution of the training sequence. 

5.3.2. Gaussian Source. 

Table 5.3 shows the performance of the vector quantizer on the gaussian source, for 

vector dimensions kl (scalar) to and a rate of 2 bitslsample. 

TABLE 5.3. Waveform vector quantizer performance on gaussian samples. 

Vector I Dimemion 

The performance on the gaussian random samples is seen to improve significantly 

with vector dimension. On out-of-sequence results, there is approximately a 0.7 dB 

improvement, at a cost of a factor of 64 increase in complexity. Figure 5.5 shows the 

input distribution with the resulting centroids superimposed on the figure. As should be 

expected for the gaussian samples, the centroids are clustered in more closely towards the 

histogram peak. 

In-Sequence 

SNR SEGSNR 

Out-of-Sequence 

SNR I SEGSNR 



Relative 
Freq. of Occur. 

FIGURE 5.5. Input distribution and centroids for gaussian random 

samples (scalar quantization). 

0 

For Er-2, the input distribution and corresponding centroids are shown in Figure 5.6. 

There is one centroid located at the origin (the mean of the distribution), with six cen- 

0 0  0 

Normalized 
Amplitude 

troids in a hexagonal pattern around the first centroid, and the remaining nine centroids 

distributed evenly around the outside. This clearly shows how vector quantization can 

achieve its performance improvement, even for an independent random source. 



FIGURE 5.6, (a) Input distribution and (b) centroids for gaussian 

random samples (dimension 2 vector quantization). 



5.3.3. Speech Source. 

Table 5.4 shows the performance of the vector quantizer on speech, for vector 

dimensions k=l (scalar) to k4, and a rate of 2 bitslsample. 

Vector Out-of-Sequence 

10.88 7.56 

. -- . -- 

TABLE 5.4. Waveform vector quantizer performance on speech. 

The performance on speech is seen to improve dramatically with vector dimension. 

On out-of-sequence results, there is over 6 dB improvement in SNR and over 9 dB 

improvement in SEGSNR, at a cost of a factor of 64 increase in complexity. Such a 

dramatic improvement is possible because speech is a highly correlated source, as may 

be seen by the inspecting the first few autocornlation coefficients for the speech files in 

Table 5.1. 

Figure 5.7 shows the input distribution with the resulting centroids superimposed on 

the figure. The large peak at very small amplitude samples is due to the high occurrence 

of low-amplitude sounds in speech, such as fricatives, and silence in stop consonants and 

between sentences. One centroid is essentially devoted to representing this central peak, 

this leaves three centroids to be distributed on the two sides of the peak. In this case, the 

training algorithm converged to a solution in which there were two centroids on the right 

and one on the left. However, it is clear that another good solution could be the mirror 

image of this solution. In fact, it is possible that this other solution could result in a 

higher SNR, since the training algorithm is only guaranteed to converge to a local 

minimum, not a global minimum. 
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FIGURE 5.7. Input distribution and centroids for speech (scalar 

quantization). 

For k2, the input distribution and corresponding centroids are shown in Figure 5.8. 

The dark diagonal band in the input distribution is a result of the high adjacent-sample 

correlation in speech, upon which the vector quantizer capitalizes to achieve its dramatic 

performance improvement. 



FIGURE 5.8. (a) Input distribution and (b) corresponding centroids 

for speech (dimension 2 vector quantization). 



5.4. VECTOR ADPCM PERFORMANCE 

In this section, the performance of the proposed solution and its variations is 

evaluated. The huge number of possible variations of predictor type, predictor order, vec- 

tor dimension, etc. makes an exhaustive study of all possible variations impossible. 

Therefore, the following approach was used to evaluate the various configurations of the 

proposed solution: 

Within the Vector ADPCM configuration, the CCITT predictor and several 

variations were investigated. For this study, a vector quantizer of dimension 

k=3 was used. The objective of this study is to determine which predictor vari- 

ations to use in subsequent tests. 

The effect of the ZSR table update period was measured, .by using the CCITT 

predictor, a k=3 vector quantizer, and varying the ZSR update period. The 

objective of this study is to determine the largest ZSR update period which 

may be used without a significant performance degradation. 

With the predictor type and ZSR update period chosen, the Vector ADPCM 

configuration was then tested as a function of vector dimension. The objective 

of this study is a performance comparison between non-gain-adaptive scalar 

ADPCM and non-gain-adaptive Vector ADPCM. 

Next, several variations on the gain adaptation method were investigated, 

using the CCITT predictor and vector dimension k=3. The objective of this 

study is to determine which gain adaptation method should be used in subse- 

quent tests. 

The best gain adaptation method from (4) was combined with the CCITT pred- 

ictor, and tested as a function of vector dimension. The objective of this study 

is a comparison between scalar ADPCM and Vector ADPCM. 

Finally, the effect of post-filtering was investigated for the proposed 

configuration. 



5.4.1. Predictor Variations 

Table 5.5 shows the performance of various predictor algorithms within the non- 

gain-adaptive Vector ADPCM configuration. In all tests, the vector dimension was k3. 

The objective of this study was to determine which predictor to use in subsequent tests. 

2p6z adap 16.00 13.64 8.32 1 1 t 1 16.02 1 13.61 / 8.76 / 
2p3z sign 14.94 11.69 I 1 t 1 15.01 1 12.M 1 ;:: 1 
2p3z adap 15.50 12.65 7.79 I I :t 1 1520 I 12.70 / 8.04 / 
3p3z adap 14.50 10.94 I 1 t 1 14.69 1 11.67 1 ;z 1 

TABLE 5.5. Performance of Non-Gain-Adaptive Vector ADPCM 

with predictor variations. 

The CCITI' predictor achieves very good performance. A 0.5 dB improvement in 

SNR and a 2.0 dB improvement in SEGSNR are possible with the adaptive step size 

algorithm. Adding a third pole does not help; nor does deleting three zeroes and apply- 

ing stability constraints to the remaining three zeroes. 

Based on the above results, the CCITT predictor is favoured due to its good perfor- 

mance and low complexity, and the 2p6z predictor with adaptive step size is favoured for 

overall performance. 



5.4.2. ZSR Table Update Period. 

The effect of the ZSR table update period was measured, by using the CCI'IT pred- 

ictor, a k=3 vector quantizer, and varying the ZSR update period. The objective of this 

study is to determine the largest ZSR update period which may be used without a 

significant performance degradation. Figure 5.9 shows the performance of the non-gain- 

adaptive Vector ADPCM algorithm as a function of ZSR update period in samples. 

SNR 

SEGSNR 

ZSR Update P e r i o d  (samples) 

FIGURE 5.9. Effect of ZSR update period on Vector ADPCM performance. 

From the above figure, we conclude that we may use a ZSR period of up to 50 sam- 

ples (about 6 ms) with no significant performance degradation. 



i 

5.4.3. Non-Gain-Adaptive Vector ADPCM 

Using the CCITT predictor and ZSR update period of 48 samples, the Vector 

ADPCM configuration was then tested as a function of vector dimension. The objective 

of this study is a performance comparison between non-gain-adaptive scalar ADPCM 

and non-gain-adaptive Vector ADPCM. 

TABLE 5.6. Performance of Non-Gain-Adaptive Vector ADPCM as a 

function of Vector Dimension k. 

As shown in Table 5.6, Non-Gain-Adaptive Vector ADPCM up to vector dimension 

k--4 achieves a 4 dB SNR improvement and over 6 dB SEGSNR improvement over non- 

gain-adaptive scalar ADPCM in out-of-sequence testing. It should also be noted that the 

improved quantizer performance with vector dimension leads to improved predictor per- 

formance, since the quantized values used to adapt the predictor and predict the follow- 

ing samples are closer to the unquantized values. 

The large improvement with vector dimension is encouraging, however, it should be 

noted that this is not yet a fair comparison with practical scalar ADPCM systems which 

normally contain gain-adaptation. This comparison follows in section 5.4.5. 

The input distributions and centroids are shown in Figure 5.10 for the non-gain- 

adaptive scalar ADPCM algorithm. 
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FIGURE 5.10. Input distribution and centroids for speech (Non- 

gain-adaptive scalar ADPCM). 

The input distributions and centroids are shown in Figure 5.11 for the two- 

dimensional non-gain-adaptive Vector ADPCM algorithm. The curved high-density 

regions in the input distribution were unexpected - these appear to be an artifact of the 

closed-loop training procedure. 



FIGURE 5.11. Input distribution and centroids for speech (Non- 

gain-adaptive Vector ADPCM). (a) k=2 input distribution. (b) k=2 

centroids. 



5.4.4. Gain Adaptation Variations 

Next, several variations on the gain adaptation method were investigated, using the 

CCITT predictor and vector dimension k=3. The objective of this study is to determine 

which gain adaptation method should be used in subsequent tests. 

Table 5.7 shows the performance of the Gain-Adaptive Vector ADPCM algorithm 

as a function of gain-adapter memory coefficient Sgaiw In all tests, the vector dimension 

was k=3 and the CCI'IT predictor was used. The objective of this study was to determine 

which value of GBdn to use in subsequent tests. 

6 gain 

TABLE 5.7. Performance of Gain-Adaptive Vector ADPCM as a 

function of gain-adapter memory coefficient tjgah 

Seq. 

in 
out 

in 
out 

in 
out 

in 
out 

Clearly, the performance is not particularly sensitive to the choice of gain-adapter 

memory coefficient, however there is a slight advantage in terms of both SNR and 

SEGSNR in out-of-sequence tests by using 6gd,,=0.95. This value was used in all subse- 

quent tests. 

SNR 

17.10 
16.30 

17.09 
16.50 

17.11 
16.79 

17.06 
16.80 

SEGSNR 

19.73 
19.10 

19.69 
19.07 

19.60 
19.04 

19.44 
18.96 

Gp 
8.32 
8.65 

8.30 
8.64 

8.34 
8.89 

8.36 
8.86 



5.4.5. Performance of Proposed Solution. 

The best gain adaptation method fiom the previous section was combined with the 

CCITT predictor, and tested as a function of vector dimension. The objective of this 

study is a comparison between gain-adaptive scalar ADPCM and gain-adaptive Vector 

ADPCM. 1 
out 

2 

4 

SNR 

14.77 
16.16 
17.1 1 
17.70 

14.18 
15.82 
16.79 
17.06 

SEGSNR 

TABLE 5.8. Performance of Gain-Adaptive Vector ADPCM as a 

function of Vector Dimension k. 

In out-of-sequence tests, Vector ADPCM with k=4 is seen to give approximately 3 

dB improvement over scalar ADPCM. The input distributions and centroids are shown in 

Figure 5.12 for the gain-adaptive scalar ADPCM algorithm, and in Figure 5.13 for the. 

gain-adaptive Vector ADPCM algorithm with vector dimension k 2 .  
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FIGURE 5.12, Input distribution and centroids for speech (gain- 

adaptive scalar ADPCM). 



FIGURE 5.13. Input distribution and centroids for speech (gain- 

adaptive vector ADPCM). (a) k=2 input distribution. (b) k=2 cen- 

troids. 



5.4.6. Post-Filtering 

Postfiltering is found to provide a significant improvement in subjective speech 

quality. The best subjective improvement is achieved with the all-pole scaling 

coefficient = 0.5 and the all-zero scaling coefficient = 1.0. Without postfiltering, the 

quantization noise is clearly audible and is somewhat annoying. With postfiltering, the 

speech is judged informally to be very intelligible, noise-free, but slightly muffled, a 

quality which prevents an informal assessment of toll quality. Therefore, the coded 

speech is informally judged to be of very good communications quality. 

5.4.7. Coding Delay 

The delay of the proposed algorithm is simply 

where k is the vector dimension, f is the sampling rate, and the factor of two accounts for 

transmitter and receiver operation. For vector dimension 4 and 8 kHz sampling rate, the 

delay is 1 ms, well below the CCITT 16 kb/s requirement of less than 5 ms, and the 

CCITI' 16 kbls objective of less than 2 ms. 

5.418. Speech Waveforms 

A display of typical waveforms produced by the various coding methods is shown 

in Figure 5.14-5.16. In all three figures, the original speech was the syllable "tau (as in 

the word "tack"), spoken by a female tallcer. 



FIGURE 5.14. Coded speech waveforms at 16 kbls. (a) Original sig- 

nal. (b) scalar quantization. (c) k=4 vector quantization. 



FIGURE 5.15. Coded speech waveforms at 16 kb/s. (a) Original sig- 

nal. (b) scalar (non-gain-adaptive) ADPCM. (c) k--4 Vector (non- 

gain-adaptive) ADPCM. 



FIGURE 5.16. Coded speech waveforms at 16 kbh. (a) Original sig- 

nal. (b) scalar (gainadaptive) ADPCM. (c) W Vector (gain-adaptive) 

ADPCM. 



5.5. Complexity Estimates 

Complexity of the proposed algorithm and its variations has been estimated on the 

basis of the number of floating-point operations per second (flops) required for imple- 

mentation. Table 5.9 shows a breakdown of the number of flops required for various 

tasks as a function of vector dimension k, codebook size ~ = 2 5  sampling rate f, total 

predictor order P=p+z, and ZSR update period p in samples. 

Algorithm 
Simple VQ 

Simple VADPCM 

VADPCM, with 

m 

VADPCM, with 

m 

and ZSR update 

VADPCM, with 

ZSR wd-, 
and gain-adapt. 

-Pan= 
predict first sample 
predict next samples 

search 
- P a  

adapt predictor 
stability check 

Task 
search 

Calc ZIR 

No. of computaUons 

Wf 

Calc ZSR 

search 
compare 

adapt predictor 
stability check 

Calc ZIR 

calc ZSR 

search 
crmpare 

adapt predictor 
stability check 

Calc ZIR 

calc ZSR 

search 
compare 

adapt predictor 
stability check 
mult by gain 
predict gain 

TABLE 5.9. Computational load of sub-tasks within VADPCM algorithms. 



The above expressions have been evaluated for vector dimensions k=l to using 

ZSR update period p 4 8  samples, 2 poles, 6 zeroes, and a sampling rate f=8 kHz. The 

results are shown in Table 5.10. 

VADPCM I VADPCM I VADPCM I 
k 

TABLE 5.10. Computational load of various VADPCM algorithms in 

Mflops/second. 

VQ ZIR 

Finally, the perfomance and the complexity of the proposed VADPCM algorithm, 

which includes precomputation of zero-input-response, periodic update of the Zero- 

state-response table, and gain-adaptive vector quantization, are shown together in Figure 

5.17. 

Clearly Vector ADPCM provides a valuable performance improvement over scalar 

ADPCM at 16 kbls, although for vector dimensions greater than k=3, performance begins 

to saturate and the complexity approaches or exceeds the limits of state-of-the-art digital 

hardware. 

VADPCM zmzSR 
WR,ZSR 

GAVQ 



SEGSNR 

SNR 

GP 

b J 

1 2 3 4 5 
Vector Dimension 

oh I 

1 2 3 4 5 
Vector Dimension 

FIGURE 5.17. Effect of Vector Dimension on (a) Performance and 

(b) Complexity of Proposed Solution. 



6. CONCLUSIONS. 

Vector ADPCM at vector dimension k=4 has been shown to provide a 3 dB perfor- 

mance improvement over scalar ADPCM, with a factor of 15 increase in complexity, 

while still maintaining an encoding/decoding delay of less than 2 milliseconds. Adaptive 

postfiltering is found to improve the subjective quality of the coded speech to approxi- 

mately the level of very good communications quality. Using the complexity reduction 

techniques described in this thesis, implementation of Vector ADPCM at k=3 using com- 

mercially available digital hardware is feasible. The complexity of the current algorithm 

at k-4 exceeds the limits of current state-of-the-art DSP chips. 

In the context of the previous state of the art in low-delay waveform coding (scalar 

ADPCM), the present work has been successful in providing a signifcant performance 

improvement with a tolerable complexity increase. However, it should be noted that, 

even under ideal conditions, the proposed algorithm does not provide toll quality coded 

speech. 

There are some steps which may be taken to improve the quality of the coded 

speech, while still maintaining the low delay and moderate complexity of the proposed 

algorithm. However, it should be noted that there are also many practical issues which 

are expected to degrade the performance of the proposed algorithm from its ideal perfor- 

mance. 

The following strategies are expected to bring improvements to the ideal perfor- 

mance of the proposed algorithm: 

1. The use of higher vector dimensions is expected to improve the performance, 

although a saturation in performance is evident already at k=3 and H. Since 

the complexity increases exponentially with vector dimension, such a strategy 

would have to include new complexity reduction techniques, i.e. structured 

codebooks. In order to ensure adequate training at high vector dimensions, 

very long training runs would be required. 



sother techniqu le for improving the performance of ADPCM algorithms is 

the use of pitch prediction, i.e. a long-term predictor which exploits the quasi- 

periodicity of voiced speech. While this technique has been found to provide a 

substantial improvement to scalar ADPCM under ideal conditions, it has been 

found to have poor performance in the presence of transmission errors [2q. 

Below is a list of practical issues which must be addressed before the proposed 

algorithm could be considered for application in the switched telephone network: 

1. Compatibility with PCM frame foxmat. The basic Vector ADPCM algorithm 

without the ZSR table update complexity reduction technique is completely 

backward-adaptive and requires no synchronization between transmitter and 

receiver, other than the fact that the transmitted codeword indices must be 

correctly received. For compatibility with the 8-bit PCM frame format, the 

preferred vector dimensions are 1, 2, and 4, with 2-bit, 4-bit, and 8-bit code- 

word indices respectively. The use of vector dimension 3 with a 6-bit code- 

word index would impose a 3-byte frame structure on the transmitted informa- 

tion which would require synchronization. 

2. Synchronization of ZSR table update. The ZSR table update technique 

described in the present work assumes that the transmitter and receiver ZSR 

tables are updated at the same times. This will give the best performance, 

however, it may not be strictly necessary. It should be possible to simply 

allow an arbitrary update phase difference between transmitter and receiver, 

and eliminate the need for synchronization of the ZSR table update. 

3 Real-time implementation issues. In the basic Vector ADPCM algorithm 

without the ZSR table update technique, the computational load is essentially 

constant - a fixed number of computations must be done for each input vector. 

However, the ZSR table update technique implies that the ZSR table is 

updated only once every p/k vectors, and therefore, the computational load is 

uneven. Two implementation strategies are possible: In the first implementa- 

tion strategy, a high-capacity DSP chip with an average processing power 

equal to the peak load may be used, however this is somewhat wasteful. In the 



second strategy, the computational load may be distributed more evenly and a 

lower-capacity DSP chip may be used. In this strategy, a partial update of the 

ZSR table update would be performed at each input vector. This is plot 

expected to degrade the performance of the proposed algorithm significantly. 

4. Voice-band Data performance. In order to provide good performance with 

voice-band data signals, the training sequence would have to include DTMF 

tones, samples of modem signals, etc. Optimizing the codebook for this 

broader class of signals will result in degraded performance on speech alone. 

5. Transmission error performance. The use of the CCITT predictor, which is 

known to have good performance in the presence of transmission errors, is 

expected to give the present algorithm some robustness in this regard. How- 

ever, the effect of transmission errors on the gain predictor and the vector 

quantizer is not known and would have to be tested if any variation of the 

present work were to be considered for application in the switched telephone 

network. It is likely that some kind of Gray coding of the codewords would 

help in the event of single bit errors. 

6. Synchronous transcoding with PCM and ADPCM. In order to allow synchro- 

nous transcoding with PCM and ADPCM, the vector quantizer must be 

designed to make a locally non-optimal decision, so that the distortion function 

after transcoding is minimized. This is expected to increase the complexity of 

the proposed algorithm and degrade its performance under non-transcoding 

conditions. 

Modifying the present design to account for the above practical issues is expected to 

result in somewhat degraded performance on speech. In conclusion, the combination of 

vector quantization with scalar linear prediction has provided an improvement to the 

state of the art in low &lay waveform coding of speech at 16 kb/s, however providing 

low &lay, moderate complexity, toll quality speech at this data rate remains an unsolved 

problem. 
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