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The Liouville—Green [or Wentzel-Kramers—Brillouin (WKB)] approximation for the
two-dimensional cochlear mechanics problem disagrees with the finite-difference solution in the
region after the response peak. This disagreement has left doubts about the validity of the Liouville—
Green approximation, and has never been satisfactorily explained. In this paper, it is shown that the
Liouville—Green approximation fails to satisfy Laplace’s equation. A new solution is proposed,
called themode-coupling LiouvilleGreen approximationin which energy is coupled into a second
wave mode, so as to obey Laplace’s equation. The new approximation gives excellent quantitative
agreement with the finite-difference solution. Furthermore, it may provide an explanation for a
second vibration mode observed in biological cochleas. Also proposed is a high-order formulation
of the stapes displacement term, which is necessary to obtain good agreement between the
Liouville—Green approximation and finite-difference solutions at low frequencies.20@D
Acoustical Society of AmericBS0001-4966)0)05010-4

PACS numbers: 43.64.Bt, 43.64.KcHC]

I. INTRODUCTION the usual traveling wave mode and a second cutoff mode.
The amplitude of the second wave mode is determined by
The Liouville—Green(LG), or WKB, approximation to  requiring that Laplace’s equation be satisfied on average in a
the cochlear mechanics problem has been studied extensivejjven vertical slice of the fluid. This procedure leads to an
prior to the mid-1980’s by Zweigt al. (1976, Steele and accurate prediction of the emergence of the second wave
Taber(1979, and de Boer and Viergevét982. However, mode, and produces an approximation that agrees quantita-
the advent of fast computers and efficient numerical algotively with the finite-difference solution. Moreover, the new
rithms has prompted many researchers to abandon the anapproximation provides an explanation for a second wave
lytic, approximate LG method in favor of “exact” numerical mode first observed in squirrel monkey basilar membrane
methods such as the finite-differen@eD) and finite-element response$Rhode, 1971
(FE) methods. These exact solutions allow efficient compu-  In this paper, we also introduce a high-order formulation
tation of the response to a given stimulus, and sometimefor the stapes displacement, which is necessary to obtain
expose unexpected behavior. Unfortunately, they do not progood agreement between the Liouville—Green approximation
vide insights into the complex wave dynamics that can beand numerical solutions at low frequencies.

provided by an accurate analytic expression for the solution.
In 1979, Steele and Taber Compared the two_”. THE LIOUVILLE-GREEN APPROXIMATION

dimensional Liouville—Green approximation to the finite- The two-dimensional cochlear model is shown in Fig. 1,
difference solution of Neely1981), as shown in Fig. 2. The where ¢(x,y,t) is the velocity potentialp is the fluid den-
LG approximation Is an gxcellent approximation to the FDsity, h is the height of the duct, is the length of the duct,
solution up to a few millimeters past the response peak, aind S(x), B(x), andM(x) are the stiffness, damping, and
which point the two solutions suddenly start to diverge. Thismass, respectively, of the basilar membrgBM). The BM
discrepancy was addressed directly by de Boer and Vieris |ocated aty=h. The fluid is assumed to be incompress-
gever(1982; they stressed that the eikonal equation in thejple,

LG analysis has multiple roots, and noted that the change in  The Liouville—Green approximation of the 2D cochlear
slope in the amplitude response curves corresponds to thRodel has been derived previously in the literat(Beele
sudden emergence of a second wave mode. However, theimd Taber, 1979 and is the starting point for the present
were unable to predict accurately when the second waveliscussion. For brevity, only the major results are shown
mode would emerge. This uncertainty about the validity ofpelow.

the Liouville—-Green approximation also contributed to its ~ The approximation for the velocity potential for a sinu-

falling out of favor in the hearing research community. soidal input with frequency is given by
In this paper, it will be shown that the Liouville—Green

approximation fails to satisfy Laplace’s equation. A new ap- Cw costiky)

proximation, called the mode-coupling Liouville—Green ap- pxy.)=

proximation, is proposed which is a linear superposition of cost(kh) \/tanhkh khsecttkh

X
X ex iwt—if k(u)du|, D
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FIG. 1. The two-dimensional cochlear model.

where C is a constant proportional to the stapes displace-
ment, andk(x) is the wave number, which is found by solv-

ing the dispersion relatiofor eikonal equation
B 2pw?
CS(X)+HiB(X)w—Mw?”
The vertical displacemeng, of the basilar membrane is re-

lated to the vertical velocity, , of the fluid aty=h, and the
velocity potential, by the following relations:

a0 d¢

E = Vy W .
A high-order formulation for the stapes displacemegthas
been determined by Watt4992 to be

k(x)tanhk(x)h 2

)

CT(kog,k{)exp(i wt)

dSt: ) (4)
htanh(koh) + koh secR(koh)
where
ik
0
2iko’ h(1—koh tanh(koh))
~ ko(2koh+sinh(2kgh))
ikghtanh(koh)] ikgh
_ ikghtanh(ko )% oh )
Ko Ko

wherek, andk are the values ok andk’, respectively, at
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FIG. 2. Comparison of Liouville—Greefdashed and finite- difference
(solid methods, recomputed after Steele and Tafi€79, and Neely
(1981, using the high-order stapes correction of Wdit892. The two
solutions have good agreement up to and just after the peak response. The
complete list of frequencies used, in kHz(feom left to right in the plots

9.05, 6.4, 4.53, 3.2, 2.26, 1.6, 1.13, 0.8, 0.57, and 0.4.

Note the excellent agreement up to the peak response,
and the disagreement just after the peak response.

x=0, and the apostrophe indicates differentiation with re-/ll. THE LIOUVILLE-GREEN APPROXIMATION FAILS

spect tox. This high-order formulation for the stapes dis-
placement is the key to obtaining a good agreement with the

finite-difference solutions at low frequencies.
Finally, the displacement ratib (x,w) can be shown to
be

o tanhkh)
D(X,w)— Eﬁ—lkhm
\/tanl"( koh) + koh secl(koh)
tanh kh) + kh secl(kh)

. (6)

Xexp{ —i ka(u)du
0

The magnitude and phase of the displacement ratio if@&q.

are plotted in Fig. 2 for the standard Liouville—Green ap-
proximation and the finite-difference solution. For compari-
son with previously published results, we use the parameters

of Neely (1981 as shown in Table I.
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TO SOLVE LAPLACE’'S EQUATION

In this section, we shall see that the Liouville—Green
approximation associated with the primary régx) fails to
satisfy Laplace’s equation in the fluid just basalward of the
cutoff region.

The LG approximation for the velocity potential was
designed to satisfy Laplace’s equation—that is, to ensure that
the flow into any region of space in thedirection is exactly
canceled by the flow out of the region in tlyedirection.

TABLE I|. Neely’'s parameters.

S(x) = Sp exp (—x/d)
Sp=1.0x10"gs 2mm 2
B=2.0gsimm2
M=1.5x10"%gmm?
d=5.0mm

h=1.0 mm
L=35.0mm
p=1.0x10"3gmm3

Lloyd Watts: Mode-coupling Liouville—Green approximation 2267
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FIG. 3. Relative Laplace errdRLE) shown as a density plot as a function
of position in the duct, for Neely’s parameters with-2.26 kHz. White
corresponds to RLEO; black corresponds to RLEL.
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Traveling Wave
Mode

Since the LG approximation is only approximate, we do not
expect thatv?¢ is exactly zero; we expect only that the net o ) "”“O
accumulation or loss in the region is small compared to the P
amount flowing through it, for a small relative error. Ex-

pressed quantitatively, the solution obeys Laplace’s equatiopic. 4. Example wave number trajectories at three different frequencies,

if using Neely's parameters. The traveling wave mode begins near the origin.
The cutoff mode ends neari7/2.

Imik]

2
V2gl<lig| or |1z <1. @
¢ ber encircles the cutoff mode wave number, whereasf for
We shall refer to the termj V2¢/k?¢| as therelative  =400Hz, the traveling wave mode is also the cutoff mode.
Laplace error or RLE, and we shall refer to inequality) as Viergever (1981 observed that the moderate slope in
the RLE criterion. A nonzero value of RLE implies that the the amplitude and phase responses after the response peak
assumption of fluid incompressibility is being violated. was consistent with the lightly damped cutoff mode. He also
It can be shown that the RLE criterion reduces to observed that the bend in the amplitude curve appeared near

the resonance point, so he proposed splicing together the
traveling wave and cutoff solutions at the resonance point,
prescribing continuity of basilar membrane velocity at the
splice. Unfortunately, this procedure resulted in a constant
error with respect to the finite-difference solutions.
Note that the RLE criterion has different properties than the
conventional vaIidity cr.iteriodk’/k2|<1. Thg reIatiop;hip " IV. THE MODE-COUPLING LIOUVILLE-GREEN
between the RLE criterion and the conventional validity cri- \mcLG) APPROXIMATION
terion is discussed in the Appendix.
As an illustrative example, let us arbitrarily use Neely's ~ We now propose the following form of the velocity-
parameters with an input frequency bf 2.26 kHz. In Fig.  potential solution:
3(a), thg relative L_gplac_e error is shown as a density plqt a5 p(x,y,1)=dy(X,Y, 1)+ C(X) (X, V1), 9)
a function of position in the duct. The large black region ) ) . )
indicates where Laplace’s equation is being violated. ThaVhere ¢, is the traveling wave solution with wave number
violation becomes significant initially at the bottom of the K1, Which originates neak,~0 for x=0, and ¢, is the
duct at about=15mm, and rises toward the basilar mem- traveling wave solution with wave numbky, which origi-
brane until abouk=17.4mm, which is approximately the Nates neak,~— (im/2) for x=0, andc(x) is the coupling
location at which the corresponding membrane displacemerf€fficient.¢; and ¢, have been determined already, so all
response in Fig. 2 bends. Thus, it can be seen that the unelflat remains is to determing(x) such that the composite
pected bend in the membrane displacement response is tfglution satisfies Laplace’s equation.
result of a gradual process that grows from the bottom of the ~ For Laplace’s equation to hold, we must have
duct over a 2-mm distance in the direction. This region Jc J2c
corresponds to the void left when the wave makes the tran-  V2¢=VZ?¢,+ CV2¢2+25 o 2 ®2=0 (10
sition from long-wave to short-wave behavior, thus “lifting
off” the bottom of the duct. This equation implies that must also depend oy to make
Recall that the wave numbé(x) is the solution of the  V?¢(x,y) vanish at every point. However, a good approxi-
dispersion relation, which in fact has infinitely many solu-mate solution is possible witt=c(x) alone, so let us
tions. Typical wave number trajectories are shown in Fig. 4specify that the total error must vanish in a vertical slice
for three different frequencies. Each curve illustrates one fh

K2 Skhtsinhakn T 2K(y tanhky—htanhkh)

<1. (8)

Kk’ ( 4kh(1—khtanhkh)

particular wave modécorresponding to one particular solu-

h h
Vzcbdy:f V2d>1dy+c(><)f V¢, dy
tion of the eikonal equation We will define the traveling 0 0

0

wave mode as the one whose wave number begins near the h 9, h
origin, and we will define the cutoff mode as the one whose +2C'(X)f o vt C"(X)f ¢, dy=0.
wave number ends neari/2. Note that for the examples 0 0
of =800 and 1131 Hz, the traveling wave mode wave num- (11
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FIG. 6. Magnitude of coupling coefficient{x) in dB for Neely’s param-
eters. Input frequencies are shown in kHz.
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tude and phase of the displacement ratio responses for all
frequencies. Clearly, the procedure has predicted the correct
amount of energy to couple into tikg solution, resulting in
good agreement with the numerical solution.

The magnitude of the corresponding coupling coeffi-
cientsc(x) is shown in Fig. 6. Although the coupling coef-
ficients increase dramatically, they are primarily balancing

’
N

Phase of
Displacement Ratio (cycles)

'
w

0 5 10 15 20 25 30 3B the natural decay of the cutoff mode. Closer examination of
(b) Distance from stapes (mm) the solutions by Watt$1992 shows that the cutoff mode
FIG. 5. Comparison of mode-coupling Liouville—Gre@tashegland finite- makes a negllglble contribution to. the amplltqde of the solu-
difference(solid) methods. tion at the basilar membrane until the traveling wave mode
begins to decay sharply. At this point, the cutoff mode has
This equation has the form accumulated significant energy, which it dissipates gradually
after the response peak.
c"(x)+P(x)c’(x)+Q(x)c(x) =R(X), (12 In order for the solution to truly satisfy Laplace’s equa-
that is, it is a second-order ordinary differential equation intion: it would require contributions from all of the wave
c(x), with nonconstant coefficients given by modes, not just the travelmg-wav_e _a}nd cutoff modes. Hoyv—
ever, the other modes, by definition, are more heavily
2[5 (dp %) dy 13 damped than the traveling-wave and cutoff modes in their
B fg¢2dy ' (13 respective regions of dominance, and thus they have only a

hoo small local effect which decays quickly after the best place.
Q(x)=f0v ¢ody (14) The precise relative phase of the two modes in the
fodody MCLG approximation is a sensitive function of the physical
he2 parameters and the input frequency, and in general may take
_ JoVeérdy (15) on any value. Occasionally, the two modes may be exactly
B fgqﬁzdy ' out of phase at the basilar membrane position where their
. . . : . amplitudes are equal. In such a case, destructive interference
It is possible to obtain approximate closed-form expressions . S . . .
: . will occur, resulting in a noticeable notch in the amplitude
¥esponse in the MCLG approximation, as seen, for example,
in Fig. 5(@) in the 4.53-kHz tracéthird dotted line from the
left). In this particular example, the MCLG approximation
shows a notch while the numerical solution at that frequency
Yoes not, whereas at 1131 Hnurth curve from the right in
Fig. 5@)] the numerical solution shows a large notch while
the MCLG approximation does not. Clearly, then, both solu-
tions are capable of producing a notch, but they appear to
The mode-coupling Liouville—GreetMCLG) approxi-  disagree as to when a notch will occur. Since the MCLG
mation is shown in Fig. 5. The MCLG approximation showssolution is only approximate, small errors in the relative
good agreement with the numerical solution in both magniphase of the traveling-wave and cutoff modes may cause the

Watts (1992. The boundary conditions for the problem are
c(x)=0 atx=0 andc’(x)=0 atx=L. Thus, we have a
one-dimensional boundary-value problemcifx) with non-
constant coefficients, which may then be solved numericall
for c(x).

V. RESULTS AND DISCUSSION
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notch to appear or disappear in disagreement with the nLACKNOWLEDGMENTS
merical solution. So, the MCLG approximation provides a
mechanism and interpretation of the notdestructive inter-
ference of wave modgsbut not a reliable prediction of
when it will occur, due to a high sensitivity to errors in the
relative phases of the modes.

The above argument was made by W&it892, show-

ing that the notch in the MCLG approximation at 4.53 kHz APPENDIX: THE CONVENTIONAL VALIDITY

was caused by a 180-deg phase difference between thes tERION AND ITS RELATIONSHIP TO THE RLE
traveling-wave and cutoff modes, but no claim was made-giTERION

about a notch appearing in the numerical solution at that
frequency. Parthasarathi, Grosh, and Nutab00 verified For a simple long-wave modéivhich applies for the
that indeed, no notch appears in the numerical solution atochlea near the stapethe system is governed by the equa-
that frequency if adequate spatial sampling is used, althougtion
they showed that a notch can be artificially introduced in the Ph(X, .t

: i : o j : yo,t)
numerical solution by insufficient spatial sampling. They — —— "~ = —Kk2(x) $(X, w,1), (A1)
concluded, however, that the notch in the numerical solution X
in a two-dimensional model is purely an artifact of insuffi- where
cient spatial sampling, and thus that two-dimensional models 572
are incapable of demonstrating the notch effect. We verified k(x)= \/ : p® .
that real notches do occur in numerical solutions of the two- h(S(x) +iB(x)w—Mw?)

dimensional modelin agreement with Steele and Taber In the classic developmertBender and Orszag, 1978
(1979 and Neely(1981)], for example in Fig. &) at 1131 ;e assume a solution of the form
Hz, and thus we assert that there is no such limitation in the
two-dimensional formulation. d(X,w,t) = doa(x)expi(b(x) + wt). (A3)

A similar notch and change in slope was first observed  gypstituting into Eq(A1) yields
by Rhode in 1971 in squirrel monkey basilar membrane re- T o
sponses. Rhode concluded: “It is possible that there is an- K —P'“+2ia’b’/a+ib"+a"/a=0. (A4)
other mode of vibration present in the cochlea.” We observeBy setting the first two terms equal, we get #ikonalequa-
that the mode-coupling Liouville—Green approximation pre-tion
dicts the notch and change of slope in agreement with nu- .
merical solutions, and with the same qualitative behavior as b(x)=J k(x)dXx, (A5)
observed in biological cochleas. 0

However, it must be noted that the present model neg 4 by setting the second two terms equal, we getrtires-
glects the fast acoustic wave associated with the slight COMort equation
pressibility of the real cochlear fluid. Cooper and Rhode
(1996 found a notch in the amplitude response above the —a(x)=k YAx). (AB)
best frequency, and concluded that it was the result of an  Tne Liouville—Green approximation amounts to neglect-
interaction between the fast acoustic wave and the normqhg the a”/a term. The Liouville—Green approximation is
(nonacoustit traveling wave mode. This finding, taken to- generally considered valiViergever, 1980; Zweiget al,
gether with the present work, suggests that a notch observeﬂ;m when the order of magnitude of the terms in the eiko-
in biological measurements above the best frequency couldy equation is much larger than the order of magnitude of

have at least two causes: an interaction of the traveling wavgyyms in the transport equation, leading to the “conventional
with the fast acoustic wave, or an interaction of the travelingva"dity criterion”

wave with the cutoff mode described in this paper.

The author would like to thank Egbert de Boer, Carver
Mead, Dick Lyon, Christopher Shera, Gerald Whitham,
Ellen Randall, John Cortese, and Allan Crawford for encour-
agement and helpful discussions on this work.

(A2)

0 <1 A7
k(X)2 ’ ( )
VI. CONCLUSIONS which states loosely that the wavelength should not change

too fast on the scale of a single wavelength for the LG solu-
The Liouville—Green approximation to the two- tion to be valid. This criterion becomes large near the stapes
dimensional cochlear mechanics problem fails to solvdor low frequencies, and has been used to explain the poor
Laplace’s equation in the cochlear fluid. A new solution,agreement at low frequencies between the LG approximation
called the mode-coupling Liouville—Green approximation, isand the numerical solutiofSteele and Taber, 1982n fact,
proposed in which energy is coupled from the traveling wavehe poor match at low frequencies is the result of using a
mode into a second cutoff wave mode. The new approximafirst-order stapes displacement term, rather than the higher-
tion gives good agreement with the finite-difference solution.order stapes displacement term of E@H. and (5) (Watts,
The second wave mode proposed in this paper may provide€992. When the higher-order term is used, the match at low
an explanation for the notch and change in slope of the basfrequencies is very good, as seen in Fig. 2. So, this leaves a
lar membrane responses first observed by Rhode in 1971. conundrum, namely, if the LG approximation is good at low

2270 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000 Lloyd Watts: Mode-coupling Liouville—Green approximation 2270



frequencies, why does the conventional validity criterion sayror of Eq. (8) as the dominant term in the error in the gov-

that the LG approximation is invalid?

The reason is that the conventional validity criterion is
only correct to first order. The functiorsgx) andb(x) are
designed to exactly cancel the first two pairs of terms in Eq

(A4), so the validity of the approximation cannot depend on

the relative magnitudes of those tersice they have been
canceled away but depends on the magnitude of & a
term relative to the largest term present, whick@sthus, a
second-order-correct validity criterion is

aH(X)
a(x)k*(x)
which is the relative error introduced into H@\1) by using
the LG approximation. Under the scaling assumptions o

Table I, in the long-wave region at low frequencies near th
stapes, Eq(A8) reduces to

<1, (A8)

1
‘WKZ(X) <1. (A9)

In terms of wavelengthh =2#/k, Eq. (A9) reduces to
N<8md, (A10)

which is satisfied for all the curves in Fig. 2 prior to the
response peak, while EGA7) is not. Note that EqA9) does
blow up in the limit ak— 0, just much more slowly than the
conventional validity criterion of EqA7).

€

erning equation

k'’ 4kh(1—khtanhkh)

12\ 1™ " 2kht sinhh
<1.

k2

+2k(y tanhky—h tanhkh)) ‘

(A12)

Now, finally, it can be seen that REEO as k—0. This
disagrees with the conventional validity criterion, which
blows up quickly ask—0, but the problem lies with the
conventional validity criterion, since it is not correct to sec-
ond order, and does not actually measure the relative error in
the governing equation. The analysis behind E@s3)-
(All) indicates that second-order error terms are small for
easonable choices of parameters such as Neely’s. Thus, we
conclude that the relative Laplace error accurately indicates
the error in the governing equation, and that the conventional
validity criterion incorrectly warns of a failure in the LG
approximation near the stapes when the approximation is, in
fact, a good one in that region.
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