
The mode-coupling Liouville–Green approximation
for a two-dimensional cochlear model
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The Liouville–Green @or Wentzel–Kramers–Brillouin ~WKB!# approximation for the
two-dimensional cochlear mechanics problem disagrees with the finite-difference solution in the
region after the response peak. This disagreement has left doubts about the validity of the Liouville–
Green approximation, and has never been satisfactorily explained. In this paper, it is shown that the
Liouville–Green approximation fails to satisfy Laplace’s equation. A new solution is proposed,
called themode-coupling Liouville–Green approximation, in which energy is coupled into a second
wave mode, so as to obey Laplace’s equation. The new approximation gives excellent quantitative
agreement with the finite-difference solution. Furthermore, it may provide an explanation for a
second vibration mode observed in biological cochleas. Also proposed is a high-order formulation
of the stapes displacement term, which is necessary to obtain good agreement between the
Liouville–Green approximation and finite-difference solutions at low frequencies. ©2000
Acoustical Society of America.@S0001-4966~00!05010-4#

PACS numbers: 43.64.Bt, 43.64.Kc@LHC#
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I. INTRODUCTION

The Liouville–Green~LG!, or WKB, approximation to
the cochlear mechanics problem has been studied extens
prior to the mid-1980’s by Zweiget al. ~1976!, Steele and
Taber~1979!, and de Boer and Viergever~1982!. However,
the advent of fast computers and efficient numerical al
rithms has prompted many researchers to abandon the
lytic, approximate LG method in favor of ‘‘exact’’ numerica
methods such as the finite-difference~FD! and finite-element
~FE! methods. These exact solutions allow efficient com
tation of the response to a given stimulus, and sometim
expose unexpected behavior. Unfortunately, they do not
vide insights into the complex wave dynamics that can
provided by an accurate analytic expression for the solut

In 1979, Steele and Taber compared the tw
dimensional Liouville–Green approximation to the finit
difference solution of Neely~1981!, as shown in Fig. 2. The
LG approximation is an excellent approximation to the F
solution up to a few millimeters past the response peak
which point the two solutions suddenly start to diverge. T
discrepancy was addressed directly by de Boer and V
gever ~1982!; they stressed that the eikonal equation in
LG analysis has multiple roots, and noted that the chang
slope in the amplitude response curves corresponds to
sudden emergence of a second wave mode. However,
were unable to predict accurately when the second w
mode would emerge. This uncertainty about the validity
the Liouville–Green approximation also contributed to
falling out of favor in the hearing research community.

In this paper, it will be shown that the Liouville–Gree
approximation fails to satisfy Laplace’s equation. A new a
proximation, called the mode-coupling Liouville–Green a
proximation, is proposed which is a linear superposition

a!Electronic mail: lwatts@lloydwatts.com, www.lloydwatts.com
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the usual traveling wave mode and a second cutoff mo
The amplitude of the second wave mode is determined
requiring that Laplace’s equation be satisfied on average
given vertical slice of the fluid. This procedure leads to
accurate prediction of the emergence of the second w
mode, and produces an approximation that agrees quan
tively with the finite-difference solution. Moreover, the ne
approximation provides an explanation for a second w
mode first observed in squirrel monkey basilar membra
responses~Rhode, 1971!.

In this paper, we also introduce a high-order formulati
for the stapes displacement, which is necessary to ob
good agreement between the Liouville–Green approxima
and numerical solutions at low frequencies.

II. THE LIOUVILLE–GREEN APPROXIMATION

The two-dimensional cochlear model is shown in Fig.
wheref(x,y,t) is the velocity potential,r is the fluid den-
sity, h is the height of the duct,L is the length of the duct,
and S(x), b(x), and M (x) are the stiffness, damping, an
mass, respectively, of the basilar membrane~BM!. The BM
is located aty5h. The fluid is assumed to be incompres
ible.

The Liouville–Green approximation of the 2D cochle
model has been derived previously in the literature~Steele
and Taber, 1979!, and is the starting point for the prese
discussion. For brevity, only the major results are sho
below.

The approximation for the velocity potential for a sin
soidal input with frequencyv is given by

f~x,y,t !5
Cv cosh~ky!

cosh~kh!Atanhkh1kh sech2 kh

3expS ivt2 i E
0

x

k~u!duD , ~1!
2266108(5)/2266/6/$17.00 © 2000 Acoustical Society of America
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where C is a constant proportional to the stapes displa
ment, andk(x) is the wave number, which is found by solv
ing the dispersion relation~or eikonal equation!

k~x!tanhk~x!h5
2rv2

S~x!1 ib~x!v2Mv2 . ~2!

The vertical displacement,d, of the basilar membrane is re
lated to the vertical velocity,vy , of the fluid aty5h, and the
velocity potential, by the following relations:

]d

]t
5vy52

]f

]y
. ~3!

A high-order formulation for the stapes displacementdst has
been determined by Watts~1992! to be

dst5
CT~k0 ,k08!exp~ ivt !

hAtanh~k0h!1k0h sech2~k0h!
, ~4!

where

T~k0 ,k08!5tanh~k0h!F12
ik08

k0
2

2
2ik08h~12k0h tanh~k0h!!

k0~2k0h1sinh~2k0h!!

2
ik08h tanh~k0h!

k0
G1

ik08h

k0
, ~5!

wherek0 andk08 are the values ofk andk8, respectively, at
x50, and the apostrophe indicates differentiation with
spect tox. This high-order formulation for the stapes di
placement is the key to obtaining a good agreement with
finite-difference solutions at low frequencies.

Finally, the displacement ratioD(x,v) can be shown to
be

D~x,v!5
d

dst
5 ikh

tanh~kh!

T~k0 ,k08!

3Atanh~k0h!1k0h sech2~k0h!

tanh~kh!1kh sech2~kh!

3expS 2 i E
0

x

k~u!duD . ~6!

The magnitude and phase of the displacement ratio in Eq~6!
are plotted in Fig. 2 for the standard Liouville–Green a
proximation and the finite-difference solution. For compa
son with previously published results, we use the parame
of Neely ~1981! as shown in Table I.

FIG. 1. The two-dimensional cochlear model.
2267 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000
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Note the excellent agreement up to the peak respo
and the disagreement just after the peak response.

III. THE LIOUVILLE–GREEN APPROXIMATION FAILS
TO SOLVE LAPLACE’S EQUATION

In this section, we shall see that the Liouville–Gre
approximation associated with the primary rootk(x) fails to
satisfy Laplace’s equation in the fluid just basalward of t
cutoff region.

The LG approximation for the velocity potential wa
designed to satisfy Laplace’s equation—that is, to ensure
the flow into any region of space in thex direction is exactly
canceled by the flow out of the region in they direction.

FIG. 2. Comparison of Liouville–Green~dashed! and finite- difference
~solid! methods, recomputed after Steele and Taber~1979!, and Neely
~1981!, using the high-order stapes correction of Watts~1992!. The two
solutions have good agreement up to and just after the peak response
complete list of frequencies used, in kHz, is~from left to right in the plots!:
9.05, 6.4, 4.53, 3.2, 2.26, 1.6, 1.13, 0.8, 0.57, and 0.4.

TABLE I. Neely’s parameters.

S(x)5S0 exp (2x/d)
S051.03107 g s22 mm22

b52.0 g s21 mm22

M51.531023 g mm22

d55.0 mm
h51.0 mm
L535.0 mm
r51.031023 g mm23
2267Lloyd Watts: Mode-coupling Liouville–Green approximation
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Since the LG approximation is only approximate, we do n
expect that¹2f is exactly zero; we expect only that the n
accumulation or loss in the region is small compared to
amount flowing through it, for a small relative error. E
pressed quantitatively, the solution obeys Laplace’s equa
if

u¹2fu!uk2fu or U¹2f

k2f U!1. ~7!

We shall refer to the termu ¹2f/k2f u as the relative
Laplace error, or RLE, and we shall refer to inequality~7! as
the RLEcriterion. A nonzero value of RLE implies that th
assumption of fluid incompressibility is being violated.

It can be shown that the RLE criterion reduces to

Uk8

k2 S 12
4kh~12kh tanhkh!

2kh1sinh 2kh
12k~y tanhky2h tanhkh! D U

!1. ~8!

Note that the RLE criterion has different properties than
conventional validity criterionuk8/k2u!1. The relationship
between the RLE criterion and the conventional validity c
terion is discussed in the Appendix.

As an illustrative example, let us arbitrarily use Neely
parameters with an input frequency off 52.26 kHz. In Fig.
3~a!, the relative Laplace error is shown as a density plot
a function of position in the duct. The large black regi
indicates where Laplace’s equation is being violated. T
violation becomes significant initially at the bottom of th
duct at aboutx515 mm, and rises toward the basilar mem
brane until aboutx517.4 mm, which is approximately th
location at which the corresponding membrane displacem
response in Fig. 2 bends. Thus, it can be seen that the u
pected bend in the membrane displacement response i
result of a gradual process that grows from the bottom of
duct over a 2-mm distance in thex direction. This region
corresponds to the void left when the wave makes the t
sition from long-wave to short-wave behavior, thus ‘‘liftin
off’’ the bottom of the duct.

Recall that the wave numberk(x) is the solution of the
dispersion relation, which in fact has infinitely many sol
tions. Typical wave number trajectories are shown in Fig
for three different frequencies. Each curve illustrates o
particular wave mode~corresponding to one particular solu
tion of the eikonal equation!. We will define the traveling
wave mode as the one whose wave number begins nea
origin, and we will define the cutoff mode as the one who
wave number ends near2 ip/2. Note that for the example
of f 5800 and 1131 Hz, the traveling wave mode wave nu

FIG. 3. Relative Laplace error~RLE! shown as a density plot as a functio
of position in the duct, for Neely’s parameters withf 52.26 kHz. White
corresponds to RLE50; black corresponds to RLE.1.
2268 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000
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ber encircles the cutoff mode wave number, whereas fof
5400 Hz, the traveling wave mode is also the cutoff mod

Viergever ~1981! observed that the moderate slope
the amplitude and phase responses after the response
was consistent with the lightly damped cutoff mode. He a
observed that the bend in the amplitude curve appeared
the resonance point, so he proposed splicing together
traveling wave and cutoff solutions at the resonance po
prescribing continuity of basilar membrane velocity at t
splice. Unfortunately, this procedure resulted in a const
error with respect to the finite-difference solutions.

IV. THE MODE-COUPLING LIOUVILLE–GREEN
„MCLG… APPROXIMATION

We now propose the following form of the velocity
potential solution:

f~x,y,t !5f1~x,y,t !1c~x!f2~x,y,t !, ~9!

wheref1 is the traveling wave solution with wave numb
k1 , which originates neark1'0 for x50, and f2 is the
traveling wave solution with wave numberk2 , which origi-
nates neark2'2 ( ip/2) for x50, andc(x) is the coupling
coefficient.f1 andf2 have been determined already, so
that remains is to determinec(x) such that the composite
solution satisfies Laplace’s equation.

For Laplace’s equation to hold, we must have

¹2f5¹2f11c¹2f212
]c

]x

]f2

]x
1

]2c

]x2 f250. ~10!

This equation implies thatc must also depend ony to make
¹2f(x,y) vanish at every point. However, a good appro
mate solution is possible withc5c(x) alone, so let us
specify that the total error must vanish in a vertical slice

E
0

h

¹2f dy5E
0

h

¹2f1 dy1c~x!E
0

h

¹2f2 dy

12c8~x!E
0

h ]f2

]x
dy1c9~x!E

0

h

f2 dy50.

~11!

FIG. 4. Example wave number trajectories at three different frequenc
using Neely’s parameters. The traveling wave mode begins near the or
The cutoff mode ends near2 ip/2.
2268Lloyd Watts: Mode-coupling Liouville–Green approximation
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This equation has the form

c9~x!1P~x!c8~x!1Q~x!c~x!5R~x!, ~12!

that is, it is a second-order ordinary differential equation
c(x), with nonconstant coefficients given by

P~x!5
2*0

h ~]f2 /]x! dy

*0
hf2dy

, ~13!

Q~x!5
*0

h¹2f2dy

*0
hf2dy

, ~14!

R~x!52
*0

h¹2f1dy

*0
hf2dy

. ~15!

It is possible to obtain approximate closed-form expressi
for the preceding integrals; the lengthy formulas are given
Watts ~1992!. The boundary conditions for the problem a
c(x)50 at x50 and c8(x)50 at x5L. Thus, we have a
one-dimensional boundary-value problem inc(x) with non-
constant coefficients, which may then be solved numeric
for c(x).

V. RESULTS AND DISCUSSION

The mode-coupling Liouville–Green~MCLG! approxi-
mation is shown in Fig. 5. The MCLG approximation show
good agreement with the numerical solution in both mag

FIG. 5. Comparison of mode-coupling Liouville–Green~dashed! and finite-
difference~solid! methods.
2269 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000
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tude and phase of the displacement ratio responses fo
frequencies. Clearly, the procedure has predicted the co
amount of energy to couple into thek2 solution, resulting in
good agreement with the numerical solution.

The magnitude of the corresponding coupling coe
cientsc(x) is shown in Fig. 6. Although the coupling coe
ficients increase dramatically, they are primarily balanc
the natural decay of the cutoff mode. Closer examination
the solutions by Watts~1992! shows that the cutoff mode
makes a negligible contribution to the amplitude of the so
tion at the basilar membrane until the traveling wave mo
begins to decay sharply. At this point, the cutoff mode h
accumulated significant energy, which it dissipates gradu
after the response peak.

In order for the solution to truly satisfy Laplace’s equ
tion, it would require contributions from all of the wav
modes, not just the traveling-wave and cutoff modes. Ho
ever, the other modes, by definition, are more heav
damped than the traveling-wave and cutoff modes in th
respective regions of dominance, and thus they have on
small local effect which decays quickly after the best pla

The precise relative phase of the two modes in
MCLG approximation is a sensitive function of the physic
parameters and the input frequency, and in general may
on any value. Occasionally, the two modes may be exa
out of phase at the basilar membrane position where t
amplitudes are equal. In such a case, destructive interfer
will occur, resulting in a noticeable notch in the amplitud
response in the MCLG approximation, as seen, for exam
in Fig. 5~a! in the 4.53-kHz trace~third dotted line from the
left!. In this particular example, the MCLG approximatio
shows a notch while the numerical solution at that freque
does not, whereas at 1131 Hz@fourth curve from the right in
Fig. 5~a!# the numerical solution shows a large notch wh
the MCLG approximation does not. Clearly, then, both so
tions are capable of producing a notch, but they appea
disagree as to when a notch will occur. Since the MCL
solution is only approximate, small errors in the relati
phase of the traveling-wave and cutoff modes may cause

FIG. 6. Magnitude of coupling coefficientsc(x) in dB for Neely’s param-
eters. Input frequencies are shown in kHz.
2269Lloyd Watts: Mode-coupling Liouville–Green approximation
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notch to appear or disappear in disagreement with the
merical solution. So, the MCLG approximation provides
mechanism and interpretation of the notch~destructive inter-
ference of wave modes!, but not a reliable prediction o
when it will occur, due to a high sensitivity to errors in th
relative phases of the modes.

The above argument was made by Watts~1992!, show-
ing that the notch in the MCLG approximation at 4.53 kH
was caused by a 180-deg phase difference between
traveling-wave and cutoff modes, but no claim was ma
about a notch appearing in the numerical solution at t
frequency. Parthasarathi, Grosh, and Nutall~2000! verified
that indeed, no notch appears in the numerical solution
that frequency if adequate spatial sampling is used, altho
they showed that a notch can be artificially introduced in
numerical solution by insufficient spatial sampling. Th
concluded, however, that the notch in the numerical solu
in a two-dimensional model is purely an artifact of insuf
cient spatial sampling, and thus that two-dimensional mod
are incapable of demonstrating the notch effect. We veri
that real notches do occur in numerical solutions of the tw
dimensional model@in agreement with Steele and Tab
~1979! and Neely~1981!#, for example in Fig. 5~a! at 1131
Hz, and thus we assert that there is no such limitation in
two-dimensional formulation.

A similar notch and change in slope was first observ
by Rhode in 1971 in squirrel monkey basilar membrane
sponses. Rhode concluded: ‘‘It is possible that there is
other mode of vibration present in the cochlea.’’ We obse
that the mode-coupling Liouville–Green approximation p
dicts the notch and change of slope in agreement with
merical solutions, and with the same qualitative behavior
observed in biological cochleas.

However, it must be noted that the present model
glects the fast acoustic wave associated with the slight c
pressibility of the real cochlear fluid. Cooper and Rho
~1996! found a notch in the amplitude response above
best frequency, and concluded that it was the result of
interaction between the fast acoustic wave and the nor
~nonacoustic! traveling wave mode. This finding, taken to
gether with the present work, suggests that a notch obse
in biological measurements above the best frequency c
have at least two causes: an interaction of the traveling w
with the fast acoustic wave, or an interaction of the travel
wave with the cutoff mode described in this paper.

VI. CONCLUSIONS

The Liouville–Green approximation to the two
dimensional cochlear mechanics problem fails to so
Laplace’s equation in the cochlear fluid. A new solutio
called the mode-coupling Liouville–Green approximation,
proposed in which energy is coupled from the traveling wa
mode into a second cutoff wave mode. The new approxim
tion gives good agreement with the finite-difference soluti
The second wave mode proposed in this paper may pro
an explanation for the notch and change in slope of the b
lar membrane responses first observed by Rhode in 197
2270 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000
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APPENDIX: THE CONVENTIONAL VALIDITY
CRITERION AND ITS RELATIONSHIP TO THE RLE
CRITERION

For a simple long-wave model~which applies for the
cochlea near the stapes!, the system is governed by the equ
tion

]2f~x,v,t !

]x2 52k2~x!f~x,v,t !, ~A1!

where

k~x!5A 2rv2

h~S~x!1 ib~x!v2Mv2!
. ~A2!

In the classic development~Bender and Orszag, 1978!
we assume a solution of the form

f~x,v,t !5f0a~x!expi ~b~x!1vt !. ~A3!

Substituting into Eq.~A1! yields

k22b8212ia8b8/a1 ib91a9/a50. ~A4!

By setting the first two terms equal, we get theeikonalequa-
tion

b~x!5E
0

x

k~x!dx, ~A5!

and by setting the second two terms equal, we get thetrans-
port equation

a~x!5k21/2~x!. ~A6!

The Liouville–Green approximation amounts to negle
ing the a9/a term. The Liouville–Green approximation i
generally considered valid~Viergever, 1980; Zweiget al.,
1976! when the order of magnitude of the terms in the eik
nal equation is much larger than the order of magnitude
terms in the transport equation, leading to the ‘‘conventio
validity criterion’’

Uk8~x!

k~x!2U!1, ~A7!

which states loosely that the wavelength should not cha
too fast on the scale of a single wavelength for the LG so
tion to be valid. This criterion becomes large near the sta
for low frequencies, and has been used to explain the p
agreement at low frequencies between the LG approxima
and the numerical solution~Steele and Taber, 1982!. In fact,
the poor match at low frequencies is the result of using
first-order stapes displacement term, rather than the hig
order stapes displacement term of Eqs.~4! and ~5! ~Watts,
1992!. When the higher-order term is used, the match at l
frequencies is very good, as seen in Fig. 2. So, this leav
conundrum, namely, if the LG approximation is good at lo
2270Lloyd Watts: Mode-coupling Liouville–Green approximation
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frequencies, why does the conventional validity criterion s
that the LG approximation is invalid?

The reason is that the conventional validity criterion
only correct to first order. The functionsa(x) andb(x) are
designed to exactly cancel the first two pairs of terms in
~A4!, so the validity of the approximation cannot depend
the relative magnitudes of those terms~since they have bee
canceled away!, but depends on the magnitude of thea9/a
term relative to the largest term present, which isk2; thus, a
second-order-correct validity criterion is

U a9~x!

a~x!k2~x!
U!1, ~A8!

which is the relative error introduced into Eq.~A1! by using
the LG approximation. Under the scaling assumptions
Table I, in the long-wave region at low frequencies near
stapes, Eq.~A8! reduces to

U 1

16d2k2~x!
U!1. ~A9!

In terms of wavelengthl52p/k, Eq. ~A9! reduces to

l!8pd, ~A10!

which is satisfied for all the curves in Fig. 2 prior to th
response peak, while Eq.~A7! is not. Note that Eq.~A9! does
blow up in the limit ask→0, just much more slowly than th
conventional validity criterion of Eq.~A7!.

In the two-dimensional case, it can be shown that
relative error introduced into the governing equati
~Laplace’s equation! by the approximate solution of Eqs.~1!
and ~2! is given by the second-order Laplace error~SOLE!

Uk8

k2 S 12
4kh~12kh tanhkh!

2kh1sinh 2kh
12k~y tanhky2h tanhkh! D

1
a9

ak2U!1, ~A11!

that is, the relative Laplace error term~RLE! of Eq. ~8! plus
the second-order relative error term of Eq.~A8!.

Since the reasoning behind Eqs.~A8!–~A10! leads to the
conclusion that the second-order relative error term of
~A8! is small, even near the stapes at low frequencies,
can drop it, leaving the two-dimensional relative Laplace
2271 J. Acoust. Soc. Am., Vol. 108, No. 5, Pt. 1, Nov 2000
y
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f
e

e
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ror of Eq. ~8! as the dominant term in the error in the go
erning equation

Uk8

k2 S 12
4kh~12kh tanhkh!

2kh1sinh 2kh
12k~y tanhky2h tanhkh! D U

!1. ~A12!

Now, finally, it can be seen that RLE→0 as k→0. This
disagrees with the conventional validity criterion, whic
blows up quickly ask→0, but the problem lies with the
conventional validity criterion, since it is not correct to se
ond order, and does not actually measure the relative erro
the governing equation. The analysis behind Eqs.~A8!–
~A11! indicates that second-order error terms are small
reasonable choices of parameters such as Neely’s. Thus
conclude that the relative Laplace error accurately indica
the error in the governing equation, and that the conventio
validity criterion incorrectly warns of a failure in the LG
approximation near the stapes when the approximation is
fact, a good one in that region.
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